87319996ce78586398711d71132ff817f9babf6d
1\documentclass[methods-collated.tex]{subfiles}
2
3\begin{document}
4
5\section{Statistics}
6
7\subsection*{Probability}
8
9\begin{align*}
10 \Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\
11 \Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\
12 \Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\
13 \Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime})
14\end{align*}
15
16Mutually exclusive: \(\Pr(A \cap B) = 0\) \\
17
18Independent events:
19\begin{flalign*}
20 \quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\
21 \Pr(A|B) &= \Pr(A) \\
22 \Pr(B|A) &= \Pr(B)
23\end{flalign*}
24
25\subsection*{Combinatorics}
26
27\begin{itemize} \tightlist
28 \item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\)
29 \item \colorbox{highlight}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\)
30 \item Note \({n \choose k} = {n \choose k-1}\)
31\end{itemize}
32
33\subsection*{Distributions}
34
35\begin{tikzpicture}
36 \begin{axis}[axis lines=left,
37 ticks=none,
38 xmin=0,
39 ymax=0.5,
40 enlargelimits=upper,
41 ylabel={\(\Pr(X=x)\)},
42 xlabel={\(x\)},
43 every axis x label/.style={at={(current axis.right of origin)},anchor=north west},
44 every axis y label/.style={at={(axis description cs:-0.02,0.5)}, anchor=south west, rotate=90},
45 ]
46 \fill[pattern=north east lines, pattern color=orange] (0,0) -- plot[domain=0:1.68, samples=50] function {abs(x)*exp(-x)} -- (1.68,0) -- cycle;
47 \fill[pattern=north west lines, pattern color=red] (1.68,0) -- plot[domain=1.68:5, samples=50] function {abs(x)*exp(-x)} -- (5,0) -- cycle;
48 \draw[dashed, blue, very thick] (axis cs:1.68,0) -- (axis cs:1.68,0.31) node [above, anchor=south west, black] {Median};
49 \draw[dashed, blue, very thick] (axis cs:2,0) -- (axis cs:2,0.27) node [above, anchor=west, black] {Mean};
50 \draw[dashed, blue, very thick] (axis cs:1,0) -- (axis cs:1,0.365) node [above, black] {Mode};
51 \node at (1,0.18) {\textbf{50\%}};
52 \node at (3.1,0.08) {\textbf{50\%}};
53 \addplot[thick, black, no markers, samples=200, domain=0:5] {abs(x)*exp(-x)};
54 \end{axis}
55\end{tikzpicture}
56
57\subsubsection*{Mean \(\mu\)}
58
59\begin{align*}
60 E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f} \tag{\(f =\) absolute frequency} \\
61 &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right] \tag{discrete}\\
62 &= \int_\textbf{X} (x \cdot f(x)) \> dx
63\end{align*}
64
65\subsubsection*{Mode}
66
67Value of \(X\) which has the highest probability
68
69\begin{itemize} \tightlist
70 \item Most popular value in discrete distributions
71 \item Must exist in distribution
72 \item Represented by local max in pdf
73 \item Multiple modes exist when \(>1 \> X\) value have equal-highest probability
74\end{itemize}
75
76\subsubsection*{Median}
77
78Value separating lower and upper half of distribution area
79
80\textbf{Continuous:}
81\[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) \> dx = 0.5 \]
82
83\textbf{Discrete:} (not in course)
84\begin{itemize} \tightlist
85 \item Does not have to exist in distribution
86 \item Add values of \(X\) smallest to largest until sum is \(\ge 0.5\)
87 \item If \(X_1 < 0.5 < X_2\), then median is the average of \(X_1\) and \(X_2\)
88 \begin{itemize}\tightlist
89 \item If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\)
90 \end{itemize}
91\end{itemize}
92
93\subsubsection*{Variance \(\sigma^2\)}
94
95\begin{align*}
96 \operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\
97 &= \sum (x-\mu)^2 \times \Pr(X=x) \\
98 &= \sum x^2 \times p(x) - \mu^2 \\
99 &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 \\
100 &= E\left[(X-\mu)^2\right]
101\end{align*}
102
103\subsubsection*{Standard deviation \(\sigma\)}
104
105\begin{align*}
106 \sigma &= \operatorname{sd}(X) \\
107 &= \sqrt{\operatorname{Var}(X)}
108\end{align*}
109
110\subsection*{Binomial distributions}
111
112Conditions for a \textit{binomial distribution}:
113\begin{enumerate} \tightlist
114 \item Two possible outcomes: \textbf{success} or \textbf{failure}
115 \item \(\Pr(\text{success})\) (=\(p\)) is constant across trials
116 \item Finite number \(n\) of independent trials
117\end{enumerate}
118
119
120\subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)}
121
122\begin{align*}
123 \mu(X) &= np \\
124 \operatorname{Var}(X) &= np(1-p) \\
125 \sigma(X) &= \sqrt{np(1-p)} \\
126 \Pr(X=x) &= {n \choose x} \cdot p^x \cdot (1-p)^{n-x}
127\end{align*}
128
129\begin{cas}
130 Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf;
131 \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont]
132 \item [x:] no. of successes
133 \item [numtrial:] no. of trials
134 \item [pos:] probability of success
135 \end{description}
136\end{cas}
137
138\subsection*{Continuous random variables}
139
140A continuous random variable \(X\) has a pdf \(f\) such that:
141
142\begin{enumerate}
143 \item \(f(x) \ge 0 \forall x \)
144 \item \(\int^\infty_{-\infty} f(x) \> dx = 1\)
145\end{enumerate}
146
147\begin{align*}
148 E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\
149 \operatorname{Var}(X) &= E\left[(X-\mu)^2\right]
150\end{align*}
151
152\[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \]
153
154\begin{cas}
155 Define piecewise functions: \\
156 \-\hspace{1em}Math3 \(\rightarrow\)
157 \begin{tikzpicture}%
158 \draw rectangle (0.5,0.5);
159 \node at (0.08,0.25) {\(\{\)};
160 \filldraw [black] (0.15, 0.4) rectangle(0.25, 0.3);
161 \draw (0.35, 0.4) rectangle(0.45, 0.3);
162 \node [font=\footnotesize] at (0.3,0.3) {\verb;,;};
163 \draw (0.15, 0.2) rectangle(0.25, 0.1);
164 \node [font=\footnotesize] at (0.3,0.1) {\verb;,;};
165 \draw (0.35, 0.2) rectangle(0.45, 0.1);
166 \end{tikzpicture}
167 % TODO: finish this section
168\end{cas}
169
170\subsection*{Two random variables \(X, Y\)}
171
172If \(X\) and \(Y\) are independent:
173\begin{align*}
174 \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\
175 \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)
176\end{align*}
177
178\subsection*{Linear functions \(X \rightarrow aX+b\)}
179
180\begin{align*}
181 \Pr(Y \le y) &= \Pr(aX+b \le y) \\
182 &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\
183 &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx
184\end{align*}
185
186\begin{align*}
187 \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\
188 \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\
189\end{align*}
190
191\subsection*{Expectation theorems}
192
193For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\).
194
195\begin{align*}
196 E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\
197 E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\
198 &\ne [E(X)]^n \\
199 E(aX \pm b) &= aE(X) \pm b \tag{linear} \\
200 E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\
201 E(X+Y) &= E(X) + E(Y) \tag{two variables}
202\end{align*}
203
204\begin{figure*}[hb]
205 \centering
206 \include{../spec/normal-dist-graph}
207\end{figure*}
208
209\subsection*{Sample mean}
210
211Approximation of the \textbf{population mean} determined experimentally.
212
213\[ \overline{x} = \dfrac{\Sigma x}{n} \]
214
215where
216\begin{description}[nosep, labelindent=0.5cm]
217 \item \(n\) is the size of the sample (number of sample points)
218 \item \(x\) is the value of a sample point
219\end{description}
220
221\begin{cas}
222 \begin{enumerate}[leftmargin=3mm]
223 \item Spreadsheet
224 \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))}
225 \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range
226 \item Input range as A1:An where \(n\) is the number of samples
227 \item Graph \(\rightarrow\) Histogram
228 \end{enumerate}
229\end{cas}
230
231\subsubsection*{Sample size of \(n\)}
232
233\[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \]
234
235Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
236
237For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
238
239\begin{cas}
240
241 \begin{itemize}
242 \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
243 \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
244 \end{itemize}
245
246\end{cas}
247
248\subsection*{Population sampling}
249
250\subsubsection*{Population proportion}
251
252\[ p = \dfrac{n \text{ with attribute in population}}{\text{population size}} \]
253
254Constant for a given population.
255
256\subsection*{Sample proportion}
257
258\[ \hat{p} = \dfrac{n \text{ with attribute in sample}}{\text{sample size}} \]
259
260Varies with each sample.
261
262\subsection*{Normal distributions}
263
264
265\[ Z = \frac{X - \mu}{\sigma} \]
266
267Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\
268\(\text{mean} = \text{mode} = \text{median}\)
269
270\begin{warning}
271 Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
272\end{warning}
273
274\subsection*{Confidence intervals}
275
276\begin{itemize}
277 \item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\)
278 \item \textbf{Interval estimate:} confidence interval for population mean \(\mu\)
279 \item \(C\)\% confidence interval \(\implies\) \(C\)\% of samples will contain population mean \(\mu\)
280\end{itemize}
281
282\begin{cas}
283 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
284 Set \textit{Type = One-Sample Z Int} \\ \-\hspace{1em} and select \textit{Variable}
285\end{cas}
286
287\subsubsection*{95\% confidence interval}
288
289For 95\% c.i. of population mean \(\mu\):
290
291\[ x \in \left(\overline{x} \pm 1.96 \dfrac{\sigma}{\sqrt{n}} \right)\]
292
293where:
294\begin{description}[nosep, labelindent=0.5cm]
295 \item \(\overline{x}\) is the sample mean
296 \item \(\sigma\) is the population sd
297 \item \(n\) is the sample size from which \(\overline{x}\) was calculated
298\end{description}
299
300\subsubsection*{Confidence interval of \(p\) from \(\hat{p}\)}
301
302\[ x \in \left( \hat{p} \pm Z \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}} \right) \]
303
304\subsection*{Margin of error}
305
306For 95\% confidence interval of \(\mu\):
307\begin{align*}
308 M &= 1.96 \times \dfrac{\sigma}{\sqrt{n}} \\
309 &= \dfrac{1}{2} \times \text{width of c.i.} \\
310 \implies n &= \left( \dfrac{1.96 \sigma}{M} \right)^2
311\end{align*}
312
313Always round \(n\) up to a whole number of samples.
314
315\subsection*{General case}
316
317For \(C\)\% c.i. of population mean \(\mu\):
318
319\[ x \in \left( \overline{x} \pm k \dfrac{\sigma}{\sqrt{n}} \right) \]
320\hfill where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\)
321
322\begin{cas}
323 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
324 Set \textit{Type = One-\colorbox{important}{Prop} Z Int} \\
325 Input x \(= \hat{p} * n\)
326\end{cas}
327
328\subsection*{Confidence interval for multiple trials}
329
330For a set of \(n\) confidence intervals (samples), there is \(0.95^n\) chance that all \(n\) intervals contain the population mean \(\mu\).
331
332\end{document}