Statistics

1 Probability

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

$$
\operatorname{Pr}(A \cup B)=0 \quad \text { (mutually exclusive) }
$$

2 Conditional probability

$$
\begin{array}{cc}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \quad \text { where } \operatorname{Pr}(B) \neq 0 \\
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)+\operatorname{Pr}\left(A \mid B^{\prime}\right) \cdot \operatorname{Pr}\left(B^{\prime}\right) & \text { (law of total probability) } \\
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B) & \text { (multiplication theorem) }
\end{array}
$$

For independent events:

- $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$
- $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$
- $\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)$

2.1 Discrete random distributions

Any experiment or activity involving chance will have a probability associated with each result or outcome. If the outcomes have a reference to discrete numeric values (outcomes that can be counted), and the result is unknown, then the activity is a discrete random probability distribution.

2.1.1 Discrete probability distributions

If an activity has outcomes whose probability values are all positive and less than one ($\Longrightarrow 0 \leq p(x) \leq 1$), and for which the sum of all outcome probabilities is unity $\left(\Longrightarrow \sum p(x)=1\right)$, then it is called a probability distribution or probability mass function.

- Probability distribution graph - a series of points on a cartesian axis representing results of outcomes. $\operatorname{Pr}(X=x)$ is on y-axis, x is on x axis.
- Mean μ or expected value $E(X)$ - measure of central tendency. Also known as balance point. Centre of a symmetrical distribution.

$$
\begin{aligned}
\bar{x}=\mu=E(X) & =\frac{\Sigma(x f)}{\Sigma(f)} \\
& =\sum_{i=1}^{n}\left(x_{i} \cdot P\left(X=x_{i}\right)\right)
\end{aligned}
$$

- Mode - most popular value (has highest probability of X values). Multiple modes can exist if $>1 X$ value have equal-highest probability. Number must exist in distribution.
- Median m - the value of x such that $\operatorname{Pr}(X \leq m)=\operatorname{Pr}(X \geq m)=0.5$. If $m>0.5$, then value of X that is reached is the median of X. If $m=0.5=0.5$, then m is halfway between this value and the next.
- Variance σ^{2} - measure of spread of data around the mean. Not the same magnitude as the original data. For distribution $x_{1} \mapsto p_{1}, x_{2} \mapsto p_{2}, \ldots, x_{n} \mapsto p_{n}$:

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(x) & =\sum_{i=1}^{n} p_{i}\left(x_{i}-\mu\right)^{2} \\
& =\sum(x-\mu)^{2} \times \operatorname{Pr}(X=x) \\
& =\sum x^{2} \times p(x)-\mu^{2}
\end{aligned}
$$

- Standard deviation σ - measure of spread in the original magnitude of the data. Found by taking square root of the variance: $\sigma=\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}$

2.1.2 Expectation theorems

$$
\begin{aligned}
E(a X \pm b) & =a E(X) \pm b \\
E(z) & =z \\
E(X+Y) & =E(X)+E(Y) \\
E(X)^{n} & =\Sigma x^{n} \cdot p(x) \\
& \neq[E(X)]^{2}
\end{aligned}
$$

3 Binomial Theorem

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x^{1} y^{n-1}+\binom{n}{n} x^{0} y^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
\end{aligned}
$$

1. powers of x decrease $n \rightarrow 0$
2. powers of y increase $0 \rightarrow n$
3. coefficients are given by nth row of Pascal's Triangle where $n=0$ has one term
4. Number of terms in $(x+a)^{n}$ expanded \& simplified is $n+1$

Combinations: ${ }^{n} \mathrm{C}_{r}=\binom{N}{k}$ (binomial coefficient)

- Arrangements $\binom{n}{k}=\frac{n!}{(n-r)}$
- Combinations $\binom{n}{k}=\frac{n!}{r!(n-r)!}$
- $\operatorname{Note}\binom{n}{k}=\binom{n}{k-1}$

3.0.1 Pascal's Triangle

$\left.\begin{array}{llllllllllllll}n= & & & & & & & & & & & & & \\ 0 & & & & & & & 1 & & & & & & \\ 1 & & & & & & & 1 & & 1 & & & & \\ 2\end{array}\right)$

