Statistics

1 Probability

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Pr(A \cup B) = 0 (mutually exclusive)

2 Conditional probability

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} \text{ where } Pr(B) \neq 0$$

$$Pr(A) = Pr(A|B) \cdot Pr(B) + Pr(A|B') \cdot Pr(B') \quad (\text{law of total probability})$$

$$Pr(A \cap B) = Pr(A|B) \times Pr(B) \quad (\text{multiplication theorem})$$

For independent events:

- $\Pr(A \cap B) = \Pr(A) \times \Pr(B)$
- $\Pr(A|B) = \Pr(A)$
- $\Pr(B|A) = \Pr(B)$

2.1 Discrete random distributions

Any experiment or activity involving chance will have a probability associated with each result or *outcome*. If the outcomes have a reference to **discrete numeric values** (outcomes that can be counted), and the result is unknown, then the activity is a *discrete random probability distribution*.

2.1.1 Discrete probability distributions

If an activity has outcomes whose probability values are all positive and less than one ($\implies 0 \le p(x) \le 1$), and for which the sum of all outcome probabilities is unity ($\implies \sum p(x) = 1$), then it is called a *probability distribution* or *probability mass* function.

- Probability distribution graph a series of points on a cartesian axis representing results of outcomes. Pr(X = x) is on y-axis, x is on x axis.
- Mean μ or expected value E(X) measure of central tendency. Also known as *balance point*. Centre of a symmetrical distribution.

$$\overline{x} = \mu = E(X) = \frac{\Sigma(xf)}{\Sigma(f)}$$
$$= \sum_{i=1}^{n} (x_i \cdot P(X = x_i))$$

- Mode most popular value (has highest probability of X values). Multiple modes can exist if > 1 X value have equal-highest probability. Number must exist in distribution.
- Median m the value of x such that $Pr(X \le m) = Pr(X \ge m) = 0.5$. If m > 0.5, then value of X that is reached is the median of X. If m = 0.5 = 0.5, then m is halfway between this value and the next.

• Variance σ^2 - measure of spread of data around the mean. Not the same magnitude as the original data. For distribution $x_1 \mapsto p_1, x_2 \mapsto p_2, \ldots, x_n \mapsto p_n$:

$$\sigma^2 = \operatorname{Var}(x) = \sum_{i=1}^n p_i (x_i - \mu)^2$$
$$= \sum_{i=1}^n (x_i - \mu)^2 \times \Pr(X = x)$$
$$= \sum_{i=1}^n x^2 \times p(x) - \mu^2$$

• Standard deviation σ - measure of spread in the original magnitude of the data. Found by taking square root of the variance: $\sigma = \operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}$

2.1.2 Expectation theorems

$$E(aX \pm b) = aE(X) \pm b$$
$$E(z) = z$$
$$E(X + Y) = E(X) + E(Y)$$
$$E(X)^{n} = \Sigma x^{n} \cdot p(x)$$
$$\neq [E(X)]^{2}$$

3 Binomial Theorem

$$(x+y)^{n} = \binom{n}{0} x^{n} y^{0} + \binom{n}{1} x^{n-1} y^{1} + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x^{1} y^{n-1} + \binom{n}{n} x^{0} y^{n}$$
$$= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

- 1. powers of x decrease $n \to 0$
- 2. powers of y increase $0 \to n$
- 3. coefficients are given by nth row of Pascal's Triangle where n = 0 has one term
- 4. Number of terms in $(x+a)^n$ expanded & simplified is n+1

Combinations: ${}^{n}C_{r} = {N \choose k}$ (binomial coefficient)

- Arrangements $\binom{n}{k} = \frac{n!}{(n-r)}$
- Combinations $\binom{n}{k} = \frac{n!}{r!(n-r)!}$
- Note $\binom{n}{k} = \binom{n}{k-1}$

3.0.1 Pascal's Triangle

n =													
0							1						
1						1		1					
2					1		2		1				
3				1		3		3		1			
4			1		4		6		4		1		
5		1		5		10		10		5		1	
6	1		6		15		20		15		6		1