9d7dfbf3b4c359c447ee5edeba76b63f7faea8ce
1# Circular functions
2
3Period of $a\sin(bx)$ is ${2\pi} \over b$
4
5Period of $a\tan(nx)$ is $\pi \over n$
6Asymptotes at $x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}$
7
8## Reciprocal functions
9
10### Cosecant
11
12![](graphics/csc.png)
13
14$$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$
15
16- **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$
17- **Range** $= \mathbb{R} \setminus (-1, 1)$
18- **Turning points** at $\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}$
19- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
20
21
22### Secant
23
24!()[graphics/sec.png]
25
26$$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$
27
28- **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$
29- **Range** $= \mathbb{R} \setminus (-1, 1)$
30- **Turning points** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
31- **Asymptotes** at $\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}$
32
33
34### Cotangent
35
36!()[graphics/cot.png]
37
38$$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$
39
40- **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$
41- **Range** $= \mathbb{R}$
42- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
43
44### Symmetry properties
45
46\begin{equation}\begin{split}
47 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
48 \operatorname{sec} (-x) & = \operatorname{sec} x \\
49 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
50 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
51 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
52 \operatorname{cot} (-x) & = - \operatorname{cot} x
53\end{split}\end{equation}
54
55### Complementary properties
56
57\begin{equation}\begin{split}
58 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
59 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
60 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
61 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
62\end{split}\end{equation}
63
64### Pythagorean identities
65
66\begin{equation}\begin{split}
67 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
68 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
69\end{split}\end{equation}