
1 COMPLEX NUMBERS

Year 12 Specialist

Andrew Lorimer

1 Complex numbers

C = {a+ bi : a, b ∈ R}

Cartesian form: a+ bi

Polar form: r cis θ

Operations

Cartesian Polar

z1 ± z2 (a± c)(b± d)i convert to a+ bi

+k × z
ka± kbi

kr cis θ

−k × z kr cis(θ ± π)

z1 · z2 ac− bd+ (ad+ bc)i r1r2 cis(θ1 + θ2)

z1 ÷ z2 (z1z2)÷ |z2|2
(
r1
r2

)
cis(θ1 − θ2)

Scalar multiplication in polar form

For k ∈ R+:

k (r cis θ) = kr cis θ

For k ∈ R−:

k (r cis θ) = kr cis


θ − π |0 < Arg(z) ≤ π

θ + π | − π < Arg(z) ≤ 0


Conjugate conjg(a+bi)

z = a∓ bi

= r cis(−θ)

Properties

z1 ± z2 = z1 ± z2

z1 · z2 = z1 · z2

kz = kz ∀ k ∈ R

zz = (a+ bi)(a− bi)

= a2 + b2

= |z|2

Modulus

|z| = | ~Oz| =
√
a2 + b2

Properties

|z1z2| = |z1||z2|∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

|z1 + z2| ≤ |z1|+ |z2|

Multiplicative inverse

z−1 =
a− bi
a2 + b2

=
z

|z|2
a

= r cis(−θ)

Dividing over C

z1

z2
= z1z

−1
2

=
z1z2

|z2|2

=
(a+ bi)(c− di)

c2 + d2

then rationalise denominator

Polar form

r cis θ = r (cos θ + i sin θ)

• r = |z| =
√

Re(z)2 + Im(z)2

• θ = arg(z) arg(a+bi)

• Arg(z) ∈ (−π, π) (principal argument)

• Multiple representations:

r cis θ = r cis(θ + 2nπ) with n ∈ Z revolutions

• cisπ = −1, cis 0 = 1

On CAS

compToTrig(a+bi) ⇐⇒ cExpand{r·cisX}

de Moivres’ theorem

(r cis θ)n = rn cis(nθ) where n ∈ Z
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Year 12 Specialist Andrew Lorimer 1 COMPLEX NUMBERS

Complex polynomials

Include ± for all solutions, incl. imaginary

Sum of squares
z2 + a2 = z2 − (ai)2

= (z + ai)(z − ai)

Sum of cubes a3± b3 = (a± b)(a2∓ab+ b2)

Division P (z) = D(z)Q(z) +R(z)

Remainder

theorem

Let α ∈ C. Remainder of

P (z)÷ (z − α) is P (α)

Factor theorem z−α is a factor of P (z) ⇐⇒

P (α) = 0 for α ∈ C

Conjugate root

theorem

P (z) = 0 at z = a± bi ( =⇒

both z1 and z1 are solutions)

nth roots

nth roots of z = r cis θ are:

z = r
1
n cis

(
θ + 2kπ

n

)

• Same modulus for all solutions

• Arguments separated by 2π
n ∴ there are n roots

• If one square root is a+ bi, the other is −a− bi

• Give one implicit nth root z1, function is z = zn1

• Solutions of zn = a where a ∈ C lie on the circle

x2 + y2 =
(
|a| 1n

)2

(intervals of 2π
n )

For 0 = az2 + bz + c, use quadratic formula:

z =
−b±

√
b2 − 4ac

2a

Fundamental theorem of algebra

A polynomial of degree n can be factorised into n linear

factors in C:

=⇒ P (z) = an(z − α1)(z − α2)(z − α3) . . . (z − αn)

where α1, α2, α3, . . . , αn ∈ C

Argand planes

Re(z)

Im(z)

r

z = a+ bi

= r cis θ

a

b

θ

• Multiplication by i =⇒ CCW rotation of π
2

• Addition: z1 + z2 ≡⇀Oz1 +⇀Oz2

Sketching complex graphs

Linear

• Re(z) = c or Im(z) = c (perpendicular bisector)

• Im(z) = mRe(z)

• |z + a| = |z + b| =⇒ 2(a− b)x = b2 − a2

Geometric: equidistant from a, b

Circles

• |z − z1|2 = c2|z2 + 2|2

• |z − (a+ bi)| = c =⇒ (x− a)2 +( y − b)2 = c2

Loci Arg(z) < θ

Re(z)

Im(z)

π
4

Arg(z) ≤ π
4

Rays Arg(z − b) = θ

Re(z)

Im(z)

1
4

π
8

Arg(z + 1
4
) = π

8

|z − 2| = |z − (1 + i)|

−1

1
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Year 12 Specialist Andrew Lorimer 2 VECTORS

2 Vectors

x

y

~u

x~i

y~j

Column notationx
y

 ⇐⇒ xi + yj

x2 − x1

y2 − y1

 between A(x1, y1), B(x2, y2)

Scalar multiplication

k · (xi + yj) = kxi + kyj

For k ∈ R−, direction is reversed

Vector addition

~u = 2~i+ 2~j

~v = −~i+ 2~j

~u+ ~v =~i+ 4~j

(xi + yj)± (ai + bj) = (x± a)i + (y ± b)j

• Draw each vector head to tail then join lines

• Addition is commutative (parallelogram)

• u− v = u + (−v) =⇒ ⇀AB = b− a

Magnitude

|(xi + yj)| =
√
x2 + y2

Parallel vectors

u||v ⇐⇒ u = kv where k ∈ R \ {0}

For parallel vectors a and b:

a · b =

|a||b| if same direction

−|a||b| if opposite directions

Perpendicular vectors

a ⊥ b ⇐⇒ a · b = 0 (since cos 90 = 0)

Unit vector |â| = 1

â =
1

|a|
a

= a · |a|

Scalar product a · b

b

a
θ

a · b = a1b1 + a2b2

= |a||b| cos θ

( 0 ≤ θ ≤ π) - from cosine rule

On CAS: dotP([a b c], [d e f])

Properties

1. k(a · b) = (ka) · b = a · (kb)

2. a · 0 = 0

3. a · (b + c) = a · b + a · c

4. i · i = j · j = k · k = 1

5. a · b = 0 =⇒ a ⊥ b

6. a · a = |a|2 = a2

Angle between vectors

cos θ =
a · b
|a||b|

=
a1b1 + a2b2
|a||b|

On CAS: angle([a b c], [a b c])

(Action → Vector →Angle)
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Year 12 Specialist Andrew Lorimer 2 VECTORS

Angle between vector and axis

Fora = a1i+ a2j + a3k which makes angles α, β, γ with

positive side of x, y, z axes:

cosα =
a1

|a|
, cosβ =

a2

|a|
, cos γ =

a3

|a|

On CAS: angle([a b c], [1 0 0])

for angle between ai + bj + ck and x-axis

Projections & resolutes

a

u b

θ

w

‖ b (vector projection/resolute)

u =
a · b
|b|2

b

=

(
a · b
|b|

)(
b

|b|

)
= (a · b̂)b̂

⊥ b (perpendicular projection)

w = a− u

|u| (scalar projection/resolute)

s = |u|

= a · b̂

=
a · b
|b|

= |a| cos θ

Rectangular (‖,⊥) components

a =
a · b
b · b

b +

(
a− a · b

b · b
b

)

Vector proofs

Concurrent: intersection of ≥ 3 lines

Collinear points

≥ 3 points lie on the same line

C
A

B

O

c

a

b

e.g. Prove that

⇀AC = m⇀AB ⇐⇒ c = (1−m)a +mb

=⇒ c =⇀OA+⇀AC

=⇀OA+m⇀AB

= a +m(b− a)

= a +mb−ma

= (1−m)a +mb

Also, =⇒ ⇀OC = λ ~OA+ µ⇀OB

where λ+ µ = 1

If C lies along ⇀AB, =⇒ 0 < µ < 1

Parallelograms

O A

BC

��

��

�

�
θ

|c| sin θ

|c| cos θ

• Diagonals ⇀OB,⇀AC bisect each other

• If diagonals are equal length, it is a rectangle

• |⇀OB|2 + |⇀CA|2 = |⇀OA|2 + |⇀AB|2 + |⇀CB|2 + |⇀OC|2

• Area = c · a

Useful vector properties

• a ‖ b =⇒ b = ka for some k ∈ R \ {0}

• If a and b are parallel with at least one point in

common, then they lie on the same straight line

• a ⊥ b ⇐⇒ a · b = 0

• a · a = |a|2
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Year 12 Specialist Andrew Lorimer 3 CIRCULAR FUNCTIONS

Linear dependence

a, b, c are linearly dependent if they are ∦ and:

0 = ka + lb +mc

∴ c = ma + nb (simultaneous)

a, b, and c are linearly independent if no vector in the

set is expressible as a linear combination of other vectors

in set, or if they are parallel.

Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.

x

y

z

(1, 1, 1)

Parametric vectors

Parametric equation of line through point (x0, y0, z0)

and parallel to ai + bj + ck is:


x = xo + a · t

y = y0 + b · t

z = z0 + c · t

3 Circular functions

sin(bx) or cos(bx): period = 2π
b

tan(nx): period = π
n

asymptotes at x = (2k+1)π
2n | k ∈ Z

Reciprocal functions

Cosecant

cosec θ =
1

sin θ
| sin θ 6= 0

• Domain = R \ nπ : n ∈ Z

• Range = R \ (−1, 1)

• Turning points at θ = (2n+1)π
2 | n ∈ Z

• Asymptotes at θ = nπ | n ∈ Z

Secant

−2π −π π 2π

−1

1

secx

x

y

cosx

sec θ =
1

cos θ
| cos θ 6= 0

• Domain = R \ (2n+1)π
2 : n ∈ Z}

• Range = R \ (−1, 1)

• Turning points at θ = nπ | n ∈ Z

• Asymptotes at θ = (2n+1)π
2 | n ∈ Z

Cotangent

−π −π2
π
2

π

−1

1

cotx tanx

x

y

cot θ =
cos θ

sin θ
| sin θ 6= 0

• Domain = R \ {nπ : n ∈ Z}

• Range = R

• Asymptotes at θ = nπ | n ∈ Z
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Symmetry properties

sec(π ± x) = − secx

sec(−x) = secx

cosec(π ± x) = ∓ cosecx

cosec(−x) = − cosecx

cot(π ± x) = ± cotx

cot(−x) = − cotx

Complementary properties

sec
(π

2
− x
)

= cosecx

cosec
(π

2
− x
)

= secx

cot
(π

2
− x
)

= tanx

tan
(π

2
− x
)

= cotx

Pythagorean identities

1 + cot2 x = cosec2 x, where sinx 6= 0

1 + tan2 x = sec2 x, where cosx 6= 0

Compound angle formulas

cos(x± y) = cosx+ cos y ∓ sinx sin y

sin(x± y) = sinx cos y ± cosx sin y

tan(x± y) =
tanx± tan y

1∓ tanx tan y

Double angle formulas

cos 2x = cos2 x− sin2 x

= 1− 2 sin2 x

= 2 cos2 x− 1

sin 2x = 2 sinx cosx

tan 2x =
2 tanx

1− tan2 x

Inverse circular functions

−1 −0.5 0.5 1

−π2

π
2

π

sin−1 x

cos−1 x

(−1,−π
2
)

(1, π
2
)

(−1, π)

x

y

Inverse functions: f(f−1(x)) = x (restrict domain)

sin−1 : [−1, 1]→ R, sin−1 x = y

where sin y = x, y ∈ [−π2 , π2 ]

cos−1 : [−1, 1]→ R, cos−1 x = y

where cos y = x, y ∈ [0, π]

tan−1 : R→ R, tan−1 x = y

where tan y = x, y ∈
(
−π2 ,

π
2

)

−π2

π
2

tan−1 x

y = π
2

y = −π
2

x

y
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Year 12 Specialist Andrew Lorimer 4 DIFFERENTIAL CALCULUS

4 Differential calculus

Limits

lim
x→a

f(x)

L−, L+ limit from below/above

limx→a f(x) limit of a point

For solving x→∞, put all x terms in denominators

e.g.

lim
x→∞

2x+ 3

x− 2
=

2 + 3
x

1− 2
x

=
2

1
= 2

Limit theorems

1. For constant function f(x) = k, limx→a f(x) = k

2. limx→a(f(x)± g(x)) = F ±G

3. limx→a(f(x)× g(x)) = F ×G

4. ∴ limx→a c× f(x) = cF where c = constant

5. limx→a
f(x)
g(x) = F

G , G 6= 0

6. f(x) is continuous ⇐⇒ L− = L+ = f(x) ∀x

Gradients of secants and tangents

Secant (chord) - line joining two points on curve

Tangent - line that intersects curve at one point

First principles derivative

f ′(x) = lim
δx→0

δy

δx
=
dy

dx

Logarithmic identities

logb(xy) = logb x+ logb y

logb x
n = n logb x

logb y
xn

= xn logb y

Index identities

bm+n = bm · bn

(bm)n = bm·n

(b · c)n = bn · cn

am ÷ an = am−n

Reciprocal derivatives

1
dy
dx

=
dx

dy

Differentiating x = f(y)

Find
dx

dy
, then

dy

dx
=

1(
dx

dy

)

Second derivative

f(x) −→f ′(x) −→ f ′′(x)

=⇒ y −→dy

dx
−→ d2y

dx2

Order of polynomial nth derivative decrements each

time the derivative is taken

Points of Inflection

Stationary point - i.e. f ′(x) = 0

Point of inflection - max |gradient| (i.e. f ′′ = 0)

Strictly increasing/decreasing

For x2 and x1 where x2 > x1:

strictly increasing

where f(x2) > f(x1) or f ′(x) > 0

strictly decreasing

where f(x2) < f(x1) or f ′(x) < 0

Endpoints are included, even where dy
dx

= 0

• f ′(a) = 0, f ′′(a) > 0

local min at (a, f(a)) (concave up)

• f ′(a) = 0, f ′′(a) < 0

local max at (a, f(a)) (concave down)

• f ′′(a) = 0

point of inflection at (a, f(a))

• f ′′(a) = 0, f ′(a) = 0

stationary point of inflection at (a, f(a)
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Year 12 Specialist Andrew Lorimer 4 DIFFERENTIAL CALCULUS

d2y

dx2
> 0

d2y

dx2
< 0

d2y

dx2
= 0 (inflection)

dy

dx
> 0

Rising (concave up) Rising (concave down) Rising inflection point

dy

dx
< 0

Falling (concave up) Falling (concave down) Falling inflection point

dy

dx
= 0

Local minimum Local maximum Stationary inflection point

Implicit Differentiation

Used for differentiating circles etc.

If p and q are expressions in x and y such that p = q,

for all x and y, then:

dp

dx
=
dq

dx
and

dp

dy
=
dq

dy

On CAS

Action → Calculation

impDiff(y^2+ax=5, x, y)

Slope fields

x

y

Parametric equations

dy

dt
=
dy

dx
· dx
dt

∴
dy

dx
=

(
dy

dt

)
(
dx

dt

) provided
dx

dt
6= 0

d2y

dx2
=

(
dy′

dt

)
(
dx

dt

) where y′ =
dy

dx

Integration

∫
f(x) · dx = F (x) + c where F ′(x) = f(x)

Definite integrals

∫ b

a

f(x) · dx = [F (x)]ba = F (b)− F (a)

• Signed area enclosed by

y = f(x), y = 0, x = a, x = b.

• Integrand is f .
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Properties

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx∫ a

a

f(x) dx = 0∫ b

a

k · f(x) dx = k

∫ b

a

f(x) dx∫ b

a

f(x)± g(x) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

Integration by substitution∫
f(u)

du

dx
· dx =

∫
f(u) · du

f(u) must be 1:1 =⇒ one x for each y

e.g. for y =

∫
(2x+ 1)

√
x+ 4 · dx

let u = x+ 4

=⇒ du

dx
= 1

=⇒ x = u− 4

then y =

∫
(2(u− 4) + 1)u

1
2 · du

(solve as normal integral)

Definite integrals by substitution

For
∫ b
a
f(x)dudx · dx, evaluate new a and b for f(u) · du.

Trigonometric integration

sinm x cosn x · dx

m is odd: m = 2k + 1 where k ∈ Z

=⇒ sin2k+1 x = (sin2 z)k sinx = (1− cos2 x)k sinx

Substitute u = cosx

n is odd: n = 2k + 1 where k ∈ Z

=⇒ cos2k+1 x = (cos2 x)k cosx = (1− sin2 x)k cosx

Substitute u = sinx

m and n are even: use identities...

• sin2 x = 1
2 (1− cos 2x)

• cos2 x = 1
2 (1 + cos 2x)

• sin 2x = 2 sinx cosx

Partial fractions

To factorise f(x) = δ
α·β :

δ

α · β · γ
=
A

α
+
B

β
+
C

γ
(1)

Multiply by (α · β · γ):

δ = βγA+ αγB + αβC (2)

Substitute x = {α, β, γ} into (2) to find denominators

Repeated linear factors

p(x)

(x− a)n
=

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n

Irreducible quadratic factors

e.g.
3x− 4

(2x− 3)(x2 + 5)
=

A

2x− 3
+
Bx+ C

x2 + 5

On CAS

Action → Transformation:

expand(..., x)

To reverse, use combine(...)

Graphing integrals on CAS

On CAS

In main: Interactive → Calculation →
∫

For restrictions, Define f(x)=... then

f(x)|x>...

Applications of antidifferentiation

• x-intercepts of y = f(x) identify x-coordinates of

stationary points on y = F (x)

• nature of stationary points is determined by sign

of y = f(x) on either side of its x-intercepts

• if f(x) is a polynomial of degree n, then F (x) has

degree n+ 1
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To find stationary points of a function, substitute x

value of given point into derivative. Solve for dy
dx = 0.

Integrate to find original function.

Solids of revolution

Approximate as sum of infinitesimally-thick cylinders

Rotation about x-axis

V = π

∫ x=b

x=a

f(x)2 dx

Rotation about y-axis

V = π

∫ y=b

y=a

x2 dy

= π

∫ y=b

y=a

(f(y))2 dy

Regions not bound by y = 0

V = π

∫ b

a

f(x)2 − g(x)2 dx

where f(x) > g(x)

Length of a curve

For length of f(x) from x = a→ x = b:

Cartesian L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

Parametric L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

On CAS

a) Evaluate formula

b) Interactive → Calculation → Line → arcLen

Rates

Gradient at a point on parametric curve

dy

dx
=
dy

dt
÷ dx

dt
| dx
dt
6= 0 (chain rule)

d2

dx2
=
d(y′)

dx
=
dy′

dt
÷ dx

dt
| y′ =

dy

dx

Rational functions

f(x) =
P (x)

Q(x)
where P,Q are polynomial functions

Fundamental theorem of calculus

If f is continuous on [a, b], then

∫ b

a

f(x) dx = F (b)− F (a)

where F =
∫
f dx

Differential equations

Order - highest power inside derivative

Degree - highest power of highest derivative

e.g.

(
dy2

d2
x

)3

order 2, degree 3

To verify solutions, find dy
dx from y and sub-

stitute into original

Function of the dependent variable

If dy
dx = g(y), then dx

dy = 1 ÷ dy
dx = 1

g(y) . Integrate both

sides to solve equation. Only add c on one side. Express

ec as A.

Mixing problems(
dm

dt

)
Σ

=

(
dm

dt

)
in

−
(
dm

dt out

)
Separation of variables

If dy
dx = f(x)g(y), then:

∫
f(x) dx =

∫
1

g(y)
dy

Euler’s method for solving DEs

f(x+ h)− f(x)

h
≈ f ′(x) for small h

=⇒ f(x+ h) ≈ f(x) + hf ′(x)
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Derivatives

f(x) f ′(x)

sinx cosx

sin ax a cos ax

cosx − sinx

cos ax −a sin ax

tan f(x) f2(x) sec2 f(x)

ex ex

eax aeax

axnx an · enx

loge x
1

x

loge ax
1

x

loge f(x)
f ′(x)

f(x)

sin(f(x)) f ′(x) · cos(f(x))

sin−1 x
1√

1− x2

cos−1 x
−1√

1− x2

tan−1 x
1

1 + x2

d
dyf(y)

1
dx
dy

(reciprocal)

uv u dvdx + v dudx (product rule)

u

v

v dudx − u
dv
dx

v2
(quotient rule)

f(g(x)) f ′(g(x)) · g′(x)

Antiderivatives

f(x)
∫
f(x) · dx

k (constant) kx+ c

xn
1

n+ 1
xn+1

ax−n a · loge |x|+ c

1

ax+ b

1

a
loge(ax+ b) + c

(ax+ b)n
1

a(n+ 1)
(ax+ b)n−1 + c | n 6= 1

(ax+ b)−1 1

a
loge |ax+ b|+ c

ekx
1

k
ekx + c

ek ekx+ c

sin kx
−1

k
cos(kx) + c

cos kx
1

k
sin(kx) + c

sec2 kx
1

k
tan(kx) + c

1√
a2 − x2

sin−1 x

a
+ c | a > 0

−1√
a2 − x2

cos−1 x

a
+ c | a > 0

a
a2−x2 tan−1 x

a + c

f ′(x)
f(x) loge f(x) + c∫

f(u) · dudx · dx
∫
f(u) · du (substitution)

f(x) · g(x)
∫

[f ′(x) · g(x)]dx+
∫

[g′(x)f(x)]dx

Note sin−1
(x
a

)
+ cos−1

(x
a

)
is constant ∀ x ∈ (−a, a)

11
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5 Kinematics & Mechanics

Constant acceleration

• Position - relative to origin

• Displacement - relative to starting point

Velocity-time graphs

Displacement: signed area

Distance travelled: total area

acceleration =
d2x

dt2
=
dv

dt
= v

dv

dx
=

d

dx

(
1

2
v2

)

no

v = u+ at x

v2 = u2 + 2as t

s = 1
2 (v + u)t a

s = ut+ 1
2at

2 v

s = vt− 1
2at

2 u

vavg =
∆position

∆t

speed = |velocity|

=
√
v2
x + v2

y + v2
z

Distance travelled between t = a→ t = b:

=

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

· dt

Shortest distance between r(t0) and r(t1):

= |r(t1)− r(t2)|

Vector functions

r(t) = xi + yj + zk

• If r(t) ≡ position with time, then the graph of

endpoints of r(t) ≡ Cartesian path

• Domain of r(t) is the range of x(t)

• Range of r(t) is the range of y(t)

Vector calculus

Derivative

Let r(t) = x(t)i + y(t)(j). If both x(t) and y(t) are

differentiable, then:

r(t) = x(t)i + y(t)j

6 Dynamics

Resolution of forces

Resultant force is sum of force vectors

In angle-magnitude form

Cosine rule: c2 = a2 + b2 − 2ab cos θ

Sine rule:
a

sinA
=

b

sinB
=

c

sinC

In i—j form

Vector of a N at θ to x axis is equal to a cos θi+a sin θj.

Convert all force vectors then add.

To find angle of an ai + bj vector, use θ = tan−1 b
a

Resolving in a given direction

The resolved part of a force P at angle θ is has magni-

tude P cos θ

To convert force || ~OA to angle-magnitude form, find

component ⊥ ~OA then:

|r| =
√(
|| ~OA

)2

+
(
⊥ ~OA

)2

θ = tan−1 ⊥ ~OA

|| ~OA

Newton’s laws

1. Velocity is constant without ΣF

2. d
dtρ ∝ ΣF =⇒ F = ma

3. Equal and opposite forces

Weight

A mass of m kg has force of mg acting on it

12
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Momentum ρ

ρ = mv (units kg m/s or Ns)

Reaction force R

• With no vertical velocity, R = mg

• With vertical acceleration, |R| = m|a| −mg

• With force F at angle θ, then R = mg − F sin θ

Friction

FR = µR (friction coefficient)

Inclined planes

F = |F | cos θi + |F | sin θj

• Normal force R is at right angles to plane

• Let direction up the plane be i and perpendicular

to plane j

i
j

R

µR

mg

θ

mg cos θ

mg sin θ

Connected particles

θ

m1

m2

m1

θ

R1

µR1

T1

m1g

m2

T2

m2g

• Suspended pulley: T1 = T2

|a| = g
m1 −m2

m1 +m2
where m1 accelerates down


m1g − T = m1a

T −m2g = m2a

 =⇒ m1g−m2g = m1a+m2a

• String pulling mass on inclined pane: Resolve

parallel to plane

T −mg sin θ = ma

• Linear connection: find acceleration of system

first

• Pulley on right angle: a = m2g
m1+m2

where m2 is

suspended (frictionless on both surfaces)

• Pulley on edge of incline: find downwards force

W2 and components of mass on plane

In this example,

note T1 6= T2:
θ

m1

m2
T2

T1

T1

m3

Equilibrium

A

sin a
=

B

sin b
=

C

sin c
(Lami’s theorem)

c2 = a2 + b2 − 2ab cos θ (cosine rule)

Three methods:

1. Lami’s theorem (sine rule)

2. Triangle of forces (cosine rule)

3. Resolution of forces (ΣF = 0 - simultaneous)

On CAS

To verify: Geometry tab, then select points with

normal cursor. Click right arrow at end of toolbar

and input point, then lock known constants.

Variable forces (DEs)

a =
d2x

dt2
=
dv

dt
= v

dv

dx
=

d

dx

(
1

2
v2

)

13
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7 Statistics

Continuous random variables

A continuous random variable X has a pdf f such that:

1. f(x) ≥ 0∀x

2.
∫∞
−∞ f(x) dx = 1

E(X) =

∫
X

(x · f(x)) dx

Var(X) = E
[
(X − µ)2

]

Pr(X ≤ c) =

∫ c

−∞
f(x) dx

Two random variables X, Y

If X and Y are independent:

E(aX + bY ) = aE(X) + bE(Y )

Var(aX ± bY ± c) = a2 Var(X) + b2 Var(Y )

Linear functions X → aX + b

Pr(Y ≤ y) = Pr(aX + b ≤ y)

= Pr

(
X ≤ y − b

a

)
=

∫ y−b
a

−∞
f(x) dx

Mean: E(aX + b) = aE(X) + b

Variance: Var(aX + b) = a2 Var(X)

Expectation theorems

For some non-linear function g, the expected value

E(g(X)) is not equal to g(E(X)).

E(X2) = Var(X)− [E(X)]
2

E(Xn) = Σxn · p(x) (non-linear)

6= [E(X)]n

E(aX ± b) = aE(X)± b (linear)

E(b) = b (∀b ∈ R)

E(X + Y ) = E(X) + E(Y ) (two variables)

Sample mean

Approximation of the population mean determined

experimentally.

x =
Σx

n

where

n is the size of the sample (number of sample points)

x is the value of a sample point

On CAS

1. Spreadsheet

2. In cell A1:

mean(randNorm(sd, mean, sample size))

3. Edit → Fill → Fill Range

4. Input range as A1:An where n is the number of

samples

5. Graph → Histogram

Sample size of n

X =

n∑
i=1

xi
n

=

∑
x

n

Sample mean is distributed with mean µ and sd σ√
n

(ap-

proaches these values for increasing sample size n).

For a new distribution with mean of n trials, E(X ′) =

E(X), sd(X ′) =
sd(X)√

n

14



Year 12 Specialist Andrew Lorimer 8 HYPOTHESIS TESTING

On CAS

• Spreadsheet → Catalog →

randNorm(sd, mean, n) where n is the

number of samples. Show histogram with

Histogram key in top left

• To calculate parameters of a dataset: Calc

→ One-variable

Normal distributions

Z =
X − µ
σ

Normal distributions must have area (total prob.) of 1

=⇒
∫∞
−∞ f(x) dx = 1

mean = mode = median

Always express z as +ve. Express confidence

interval as ordered pair.

Central limit theorem

If X is randomly distributed with mean µ and sd σ,

then with an adequate sample size n the distribution of

the sample mean X is approximately normal with mean

E(X) and sd(X) = σ√
n

.

Confidence intervals

• Point estimate: single-valued estimate of the

population mean from the value of the sample

mean x

• Interval estimate: confidence interval for popu-

lation mean µ

• C% confidence interval =⇒ C% of samples will

contain population mean µ

95% confidence interval

For 95% c.i. of population mean µ:

x ∈
(
x± 1.96

σ√
n

)
where:

x is the sample mean

σ is the population sd

n is the sample size from which x was calculated

On CAS

Menu → Stats → Calc → Interval

Set Type = One-Sample Z Int

and select Variable

Margin of error

For 95% confidence interval of µ:

M = 1.96× σ√
n

=⇒ n =

(
1.96σ

M

)2

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean µ:

x ∈
(
x± k σ√

n

)
where k is such that Pr(−k < Z < k) = C

100

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is

0.95n chance that all n intervals contain the population

mean µ.

8 Hypothesis testing

Note hypotheses are always expressed in

terms of population parameters

Null hypothesis H0

Sample drawn from population has same mean as con-

trol population, and any difference can be explained by

sample variations.

Alternative hypothesis H1

Amount of variation from control is significant, despite

standard sample variations.

15
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p-value

Probability of observing a value of the sample statistic

as significant as the one observed, assuming null hypoth-

esis is true.

For one-tail tests:

p-value = Pr
(
X ≶ µ(H1) | µ = µ(H0)

)
= Pr

(
Z ≶

(µ(H1)− µ(H0)) ·
√
n

sd(X)

)
then use normCdf with std. norm.

p Conclusion

> 0.05 insufficient evidence against H0

< 0.05 (5%) good evidence against H0

< 0.01 (1%) strong evidence against H0

< 0.001 (0.1%) very strong evidence against H0

Significance level α

The condition for rejecting the null hypothesis.

If p < α, null hypothesis is rejected

If p > α, null hypothesis is accepted

z-test

Hypothesis test for a mean of a sample drawn from a

normally distributed population with a known standard

deviation.

On CAS

Menu → Statistics → Calc → Test.

Select One-Sample Z-Test and Variable, then in-

put:

µ cond: same operator as H1

µ0: expected sample mean (null hypoth-

esis)

σ: standard deviation (null hypothesis)

x: sample mean

n: sample size

One-tail and two-tail tests

p-value (two-tail) = 2× p-value (one-tail)

One tail

• µ has changed in one direction

• State “H1 : µ ≶ known population mean”

Two tail

• Direction of ∆µ is ambiguous

• State “H1 : µ 6= known population mean”

p-value = Pr(|X − µ| ≥ |x0 − µ|)

=

(
|Z| ≥

∣∣∣∣ x0 − µ
σ ÷
√
n

∣∣∣∣)

(µ− 2σ) (µ− σ) µ (µ+ σ) (µ+ 2σ)

1
σ
√

2π

68.27%

95.35%

99.73%

x

P
r(
X

=
x

)

−2 −1 0 1 2 Z
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where

µ is the population mean under H0

x0 is the observed sample mean

σ is the population s.d.

n is the sample size

Modulus notation for two tail

Pr(|X−µ| ≥ a) =⇒ “the probability that the distance

between µ and µ is ≥ a”

Inverse normal

On CAS

invNormCdf("L", α,
σ

nα
, µ)

Errors

Type I error H0 is rejected when it is true

Type II error H0 is not rejected when it is false

Actual result

z-test H0 true H0 false

Reject H0 Type I error Correct

Do not reject H0 Correct Type II error
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