Comparison of Energy Sources

Andrew Lorimer

Energy source	Energy content	Renewability	Environmental impacts of extraction	Environmental impacts of combustion	Key combustion equation/s
Coal (brown/black)	Black: 34 kJ/g; Brown: 16 kJ/g	Non-renewable - produced by fos- silised plant ma- terial (millions of years)	Destruction of vegetation, pollu- tion due to mine waste, green- house emissions from transport & mining machinery	Acid rain (SO ₂), greenhouse gas emissions (ac- celerates climate change), air pollution (e.g. smog)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Crude oil	30 kJ/g	Non-renewable - organisms fossilised over millions of years. Limited world- wide supply	Transport by road & sea re- leases greenhouse gases.	Toxic CO with incomplete com- bustion, produces CO_2 contributing to climate change.	$\begin{array}{ccc} Complete: & 2 \operatorname{C}_{16}\operatorname{H}_{34}(l) & + \\ 49 \operatorname{O}_2(g) & \longrightarrow & 32 \operatorname{CO}_2(g) + 34 \operatorname{H}_2\operatorname{O} \\ (g) \\ Incomplete: & 2 \operatorname{C}_{16}\operatorname{H}_{34}(l) & + \\ 17 \operatorname{O}_2(g) & \longrightarrow & 32 \operatorname{C}(s) + & 34 \operatorname{H}_2\operatorname{O} \\ (g) \end{array}$
Petroleum gas	48 kJ/g	Non-renewable (derived from crude oil)	Refinement causes hydrocar- bon pollution of air	Uncombusted hydrocarbons may be released (CO(g)), causing photochemical smog.	$\begin{array}{ccc} \text{Complete:} & 2 \operatorname{C_8H_{18}(l)} & + \\ 25 \operatorname{O_2(g)} & \longrightarrow & 16 \operatorname{CO_2(g)} + 18 \operatorname{H_2O} \\ \text{(g);} & \Delta H = 5.51 \text{ MJ/mol octane} \\ \text{Incomplete:} & 2 \operatorname{C_8H_{18}(l)} & + \\ 17 \operatorname{O_2(g)} & \longrightarrow & 16 \operatorname{CO(g)} + 18 \operatorname{H_2O} \\ \text{(g)} \end{array}$
Coal seam gas	$\begin{array}{l} \approx & 54 \\ \rm kJ/g \\ \rm (nat. \\ \rm gas) \end{array}$	Non-renewable (byproduct of natural coal production)	Destruction of vegetation & geology (drilling), pollution of aquifers	Greenhouse gas emissions	$ \begin{array}{c} \text{Methane} & (\text{complete}):\\ \text{CH}_4(g) + 2 \operatorname{O}_2(g) & \longrightarrow & \operatorname{CO}_2(g) + \\ 2 \operatorname{H}_2 O(g) & \end{array} $
Biogas	$26 \ \mathrm{kJ/g}$	Very renewable - sourced from anaerobically decaying organic waste (e.g. ma- nure). Currently low worldwide supply.	Relief of landfill. Reduces air pollu- tion from waste. May require dam- aging boring & trenching.	Low odour & smoke. Pro- duces greenhouse gases like other methane-based fuels.	Methane (complete): $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$
Bioethanol	$30 \ \mathrm{kJ/g}$	Very renewable - sourced from fermented sug- ars (e.g. wheat starch, molasses). Combining with E10 reduces renewability.	of agricultural waste (landfill reduction). More land dedicated to bioethanol sources, less for food agriculture.	Produces $CO(g)$ and hydrocar- bons (greenhouse gases) without E10. Produces $CO_2(g)$ with E10. Can corrode en- gines (high water retention).	$C_{2}H_{5}OH(l) + 3O_{2}(g) 2CO_{2}(g) + 3H_{2}O(l); \Delta H = 1370$ kJ/mol
Biodiesel	42 kJ/g	Very renewable - sourced from used cooking oil, tal- low, oil seed crops	Consumption of waste (landfill reduction). Less space for agricul- ture & forests. Biodegradable. Byproducts (glyc- erol) can be used elsewhere.	Similar to petrodiesel - produces CO ₂ (g) (greenhouse gas), contributing to air pollution & climate change	$C_{17}H_{29}COOCH_3(l) + 26O_2(g) \longrightarrow$ 19CO ₂ (g) + 16H ₂ O(g)

Fuel	Acquired	Chemical	Combustion	Fuel line flow	Environmental im-
type	from	structures	products		pacts
Petrodiesel	Refined crude oil (decaying marine life)	Alkanes $(C_n H_{2n+1})$ - 12-24 C atoms / molecule	Complete: $CO_2(g), H_2O$ (g) Incomplete: $C(s), H_2O(g)$ Minor products: SO_2, NO_x, CO	Freezes at $\approx -8^{\circ}$ C. Viscoscity $\propto 1$ / temperature. Gels at -19° C due to viscoscity. Vaporises at $\approx 370^{\circ}C$. Not significantly hygro- scopic - inconducive to bacteria & corro- sion.	Extraction: destruc- tion of marine environ- ment, transport emis- sions, oil spills. Refinement: hydrocar- bon byproducts pollute air. Combustion: green- house effect (climate change), air pollution e.g. photochemical smog, noise pollution.
Biodiesel	Fatty acids from plants & animals - byprod- ucts e.g. cooking oil, tallow, oil seed crops	Alcohol esters $(C_n H_{2n+1} OH)$. Fats (esters be- tween fatty acids & glyc- erol) reac with an alcohol e.g. methanol with a catalyst (transesterifica- tion).	Same emissions as petrodiesel, but $n[CO_2(g)]$ and $n[H_2O(g)]$ are lower. Higher NO_x emission.	Freezes at 2° C. Hy- groscopic - gels at a higher tempera- ture than petrodiesel (causes engine block- ages) and accelerates growth & rust.	Lower greenhouse gas emissions than petrodiesel. Biodegradable. Con- sumes waste. May consume land for agriculture or natural heritage (deforesta- tion).

References

[1] Diesel fuel — Wikipedia. https://en.wikipedia.org/wiki/Diesel_fuel, 2019. [Online; accessed 08-Jan-2019].

[2] Taylor et. al. Chemistry 2: VCE units 3&4. 2017.