Food chemistry

Andrew Lorimer

1 Vitamins

Fat-soluble vitamins

- Carbon and hydrogen
- Non-polar (few or no polar groups)
- Soluble in other non-polar solvents e.g. fats, oils
- Can be synthesised endogenously

Water-soluble vitamins

- Absorbed directly into bloodstream
- Catalyse cellular reactions
- Excreted through kidneys in urine
- Must be obtained from food

2 Proteins

- All proteins contain C, H, O, N
- Plants make proteins from inorganic compounds, animals cannot
- Built from monomers called **amino acids**

Aminio acids

- Contains amino $(-NH_2)$ and carboxyl (-COOH)
- Most have four groups bonded to central atom
- May be polar or non-polar (amphoteric), acidic or basic
- Essential amino acids cannot be synthesised, must be supplied in diet
- Amino acids (except glycine) are enantiomers due to chiral centres
- Must be correct chirality to act as a biological catalyst

Ο Η OH - H Η С R

Zwitterions

- Zwitterion = dipolar ion
- Behaves as a base in acidic environments: $-COOH-+H^+ \longrightarrow -COOH$
- Behaves as an acid in basic environments: ammonium group loses $H^+ \implies$ anionic form

$${}^{+}\mathrm{H}_{3}\mathrm{N-CH}_{2}-\mathrm{COOH} \xleftarrow{+\mathrm{H}^{+}}{\longrightarrow} {}^{+}\mathrm{H}_{3}\mathrm{N-CH}_{2}-\mathrm{COO}^{-} \xleftarrow{-\mathrm{H}^{+}}{\longrightarrow} \mathrm{H}_{2}\mathrm{N-CH}_{2}-\mathrm{COO}^{-}$$

acid form zwitterion form anionic

cationic

Formation of proteins

Amino acid \rightarrow peptide

(polymerisation)

Peptide group (amide): -C=ONH (condensation reaction produces H_2O) Amino acid *residue* - product of peptide formation reaction Large polypeptides are called *proteins*

Protein structure

- 1. Primary structure order of amino acids in peptide chain
- 2. Secondary structure coils/pleats/folds in polymer
- 3. Tertiary structure three-dimensional structure, e.g. H-bonding, ionic bonding
- 4. Quaternary structure arrangement of multiple protein molecules

Enzymes

- Biological catalysts (lowers E_A)
- Names usually end in *-ase*
- Every enzyme has a unique 3D shape
- Rate of reaction \propto concentration up to saturation point
- Substrate reactant molecule
- Active site destination of substrate

Lock and key model

Reactants and enzymes must have complementary shapes

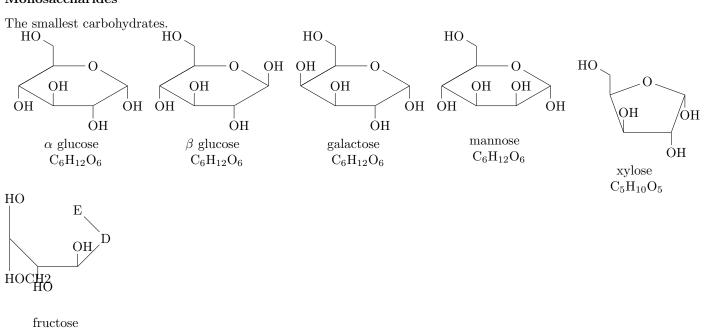
Indicued fit model

Active site may change to fit subtrate

Coenzymes

"Helper" molecules to enzymes. Non-protein molecules. Temporarily forms a loose bond with protein molecule to form active enzyme. Coenzymes are not specific to the substrate (different to enzymes).

Digestion of protein


Proteins are hydrolysed by the *pepsin* enzyme (\implies addition of H₂O).

Hydrolysis: breaking of strong covalent (peptide) bonds

Denaturation: breaking of weak bonds (dispersion, H-bonds)

3 Carbohydrates

Monosaccharides

 $C_6H_{12}O_6$