Year 12 Chemistry

Unit 3 Revision Lecture Monash University presented by Peter Skinner

Andrew Lorimer

4 July 2019

1 Course structure

- Unit 3: 2 SACs, 16% of study score
 - 1. Energy production
 - Obtaining energy from fuels
 - Fuel choices
 - Galvanic cells
 - Fuel cells
 - 2. Optimising yield
 - Rate of reactions
 - Extent of reactions
 - Production via electrolysis
 - Rechargable batteries
- Unit 4: 3 SACs, 24% of study score
- Exam: 60% of study score
 - -15 minutes reading time, 2.5 hours writing time
 - 30 multiple choice questions (spend 30—45 minutes, **do last**) harder in new study design
 - 90 marks written questions (spend 1 hr 45 m—2 hr)
 - Last year:
 - * 23% calculations (21 marks)
 - * 44% extended answer (40 marks)
 - $\ast~32\%$ short answer (29 marks)
 - 5—10 marks on writing chemical equations
 - Same marking panel as last year
 - Indirect assessment of pracs
 - ≥ 1 mark for significant figures
 - Importance of written communication
 - First parts are important, no consequential marks
 - Use dot points (short form) especially in rates & concentration

Key points

- Spend 30—45 minutes on multiple choice
- Focus on redox reactions
- Use data book
- Multiple choice questions are hard
- Memorise oxidation numbers

2 Energy production

- $C = n \div v$ or $C = m \div V$ (concentration in g L⁻¹)
- Gases: PV = nRT and $n = V \div V_m$
- Past exams before 2017 use different SLC
- Renewability *reasonable* timeframe
- Fuel choices consider:
 - External temperature
 - Viscosity (intermolecular forces)
 - Hygroscopic properties (attracts water \implies forms H-bonds)
 - Cloud point
- Blended fuels use energy per mass not energy per mol

3 Yield & rate

- Equilibrium constant K_C needs units
- $K_C \equiv K$
- Example question for rates: limiting factor for rate, given a set (equal) rate of both reactants consumption/production
- Collision theory:
 - 1. Particles must collide
 - 2. Particles must collide with sufficient energy to overcome E_A
- Increase of rate with temperature:
 - 1. \uparrow temperature $\implies \uparrow$ energy \implies more frequent collisions
 - 2. \uparrow temperature $\implies \uparrow$ energy \implies collisions occur with greater energy
 - (\implies greater *proportion* of particles that can react per unit time)
- $\uparrow c(\text{reactants}) \implies \text{more collisions}$
- Definition of *rate*: more products per unit time \longrightarrow faster rate
- Cause and effect: propose hypothesis and prove by induction
- Maxwell-Boltzmann distributions x_{peak} is constant for different concentrations
- Memorise definition of *catalyst*: provides a reaction with an alternative energy pathway which has a lower activation energy

3.1 Equilibria

- all reactants and products are present at equilibrium
- K_C is fixed at a constant temperature and reaction
- K_C changes with concentrations (relative)
- If reaction equation is reversed, K_C value will be the reciprocal
- If temperature changes, K_C will change (but not necessarily proportionally)
- Le Chatelier's principle: If a change is made to a system at equilibrium, the system will partially oppose this change if it is possible

- Accuracy of graph drawing use **clear** plastic ruler
 - Label vertical ratios
- Use concentration table format for calculating equilibrium constant K_C

Important

 K_C is **not** related to the rate of reaction \implies we cannot say how fast a reaction os going to occur from the K_C value

3.2 Exothermic & endothermic reactions

- All combustion reactions are exothermic
- Data book: molar heat of combustion = $|\Delta H|$
- Endothermic reactions rarely occur naturally (creates instability/entropy)
- $E_A = |E_{\max} E_{\text{initial}}|$
- If coefficients of a thermochemical equation are changed, ΔH also changes
- Possible data discrepencies in theoretical results:
 - State of H_2O
 - Incomplete combustion
 - Heat loss to environment
- Analogy with simultaneous equations
- Calorimetry insulate *sides* of can not bottom. Be specific.

Multiple choice question examples (features of **exothermic** reactions):

a) Products are as they have le	ss chemical energy than reactants	(more stable)
b) required to break bonds in	n products compared to reactants	(more chemical energy)
Multiple choice question examples (features	of endothermic reactions):	
a) Transformation of energy from	om surroundings into	(thermal, chemical)
b) : Surroundings and reaction becomes		(colder)

4 Oxidation numbers (memorise)

Species	Rule
Elements	Always 0
Ions	Same as common ion
Hydrogen	+1 (unless present as H_2O - O.N. = 0; or as hydride - O.N. = -1)
Oxygen	-2 (unless present as O_2 - O.N. = 0; or as peroxide - O.N. = -1)
Molecules	Sum of O.N. must equal zero
Molecular ions	Sum of O.N. must equal overall charge on ion

5 Redox reactions

- Verify equations: check charge of each side independently: charge(LHS) = charge(RHS)
- Electrochemical series always has oxidants on left
- Top left and bottom right always react spontaneously
- For electrochemical cell questions: first parts are important, no consequential marks
- Non-standard conditions can alter positions of half-equations on electrochemical series and change E^0 values
- Secondary cells polarity is constant, but reaction at each electrode swaps

5.1 Galvanic cells

- Value of E^0 is *not* a reliable indicator for rate of reaction
- Half cells are physically separate
- Products must remain in contact with electrodes

5.2 Electrolytic cells

- Possible question: name observations
 - Bubbles
 - O₂ would *not* be visible
 - Cannot see \uparrow [H⁺]
 - Can see Cu(s) deposit on electrode
 - Can see colour change (pH) ${\rm Cu_2}^+$ solution can be an indicator
- Less side reactions in e.g. lithium ion cells (efficiency)
- Lower reactions in electrochemical series do not occur forwards $(L \rightarrow R)$
- Check state of H₂O can it be liquid at that temperature?

5.3 Fuel cells

- Galvanic cells are primary cells, fuel cells are not primary are they secondary?
- Major disadvantage of fuel cells: expensive electrodes (they must also function as catalysts)
- Fuel cells same overall reaction as combustion
- Reactangs must not come into contact
- Highly efficient

5.4 Electrochemical series

Strongest oxidant will always react preferentially with best reductant Always identify *all* chemicals present in reaction on electrochemical series