Organic Chemistry

Large number of compounds due to:

- 4 valence pairs
- single / double / triple bonds
- cyclic (ring) structures

Properties of hydrocarbons

- Saturated all C-C bonds are single
- Insoluble in water
- Almost non-polar (similar electronegativities)
- Only dispersion forces (valence e-)
- Dispersion forces increase with length
- Branched molecules have lower density

Linear (aliphatic)

Alkanes: $C_n H_{2n+2}$ Alkenes: $C_n H_{2n}$ Alkynes: $C_n H_{2n-2}$

Naming hydrocarbons

- Branches end with -yl
- Indicate number of branches with di-, tri- etc.
- Longest unbranched carbon chain includes function group

Functional groups

Alcohols
$$-OH$$
 $R-OH$

Esters $-OCO R-C \bigcirc O-R$

Aldehydes $-CHO$ $R-C \bigcirc H$

Ketones $-CO R \bigcirc C=O$

Carboxylic acids $-COOH$ $R-C \bigcirc O-H$

Ethers $-O O \bigcirc R$

Amines $-NH_2$ $R-N \bigcirc H$

Amides $CO-NH$ $R \bigcirc N$

H

Isomers

- Structural isomers same molecular formula, different arrangement
- Positional isomers different position of functional group (affects polarity)

- Chain isomers affects boiling point (more branches *implies* lower boiling point)
- Stereoisomers same structural configuration, different orientation
- Optical/chiral isomers (enantiomers) chiral centre, 4 groups bonded to C, non-superimposable mirror image. Racemic mixture: 50/50 of each enantiomer. Affects optical polarity of light.
- Geometric isomers C=C double bond, 2 groups bonded to carbon atoms
 - **Cis** same horizontal plane (symmetrical)
 - Trans diagonal (asymmetrical)

 $\begin{array}{cccc} cis & trans \\ \hline R & R & R & R \\ \hline C = C & C = C \\ R' & R' & R' & R \end{array}$

Flash point

Lowest temperature at which the liquid gives off enough vapour to be ignited. Flammable \implies flash point > 37.8 °C.

Reactions

Cracking - split moluecules with heat/pressure/catalyst

Alkanes

- Relatively inert
- Non-polar solvent
- Non-soluble in H₂O
- Combusts in O_2 (forms $CO_2 + H_2O$)
- Reacts with halogens (**substitution** of H)

Alkenes

- More reactive than alkanes
- Addition reactions: C=C bond is broken (energy released)
- Addition polymerisation

Alcohols

- Can be formed from haloalkane substitution reaction
- Oxidation (combustion)
- Oxidation state \propto no. of atoms connected to C
- Substitution of functional group, e.g. $ROH + NH_3 \longrightarrow RNH_2 + H_2O$
- Primary alcohols oxidise to aldehydes then carboxylic acids
- Secondary alcohols oxidise to ketones

Carboxylic acids

- Weak acids
- Hydrolysis: $RCOOH + H_2O \rightleftharpoons RCOO^- + H_2O^+$
- Rxn with amines carboxylic acid + amine \rightarrow ammonium salt \rightarrow amide + water

Esterification

- Condensation reactions (esterification): $RCOOH + R'OH \longrightarrow RCOOR' + H_2O$
- This is reversed by hydrolysis: ester + water \rightarrow carboxylic acid + alcohol
- Polyesters

Summary of reactions

Combustion: $C_x H_y + z O_2 \longrightarrow x CO_2 + \frac{y}{2} H_2 O$ where $z = x + \frac{y}{4}$ Substitution: e.g. halogenation/chlorination, catalysed by UV (alkanes) or compounds (alcohols etc.) which

creates free radicals (unpaired e-)

Addition: C=C bond is broken, catalyst is required

Addition polymerisation: uses addition to form a polymer

Condensation polymerisation: produces H_2O

Oxidation: occurs in alcohols to form aldehydes with catalysts $\mathrm{H^+/MnO_4}^-$ (aq) or $\mathrm{H^+/Cr_2O_72}$ - (aq) - see

combustion equation

Cracking: heat/pressure/catalyst to break molecules