Calculus

Average rate of change

$$m \text{ of } x \in [a, b] = \frac{f(b) - f(a)}{b - a} = \frac{dy}{dx}$$

On CAS: Action \rightarrow Calculation \rightarrow diff

Instantaneous rate of change

Secant - line passing through two points on a curve **Chord** - line segment joining two points on a curve

Limit theorems

- 1. For constant function f(x) = k, $\lim_{x \to a} f(x) = k$
- 2. $\lim_{x\to a} (f(x) \pm g(x)) = F \pm G$
- 3. $\lim_{x\to a} (f(x) \times g(x)) = F \times G$ 4. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{F}{G}, G \neq 0$

A function is continuous if $L^- = L^+ = f(x)$ for all values of x.

First principles derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Not differentiable at:

- discontinuous points
- sharp point/cusp
- vertical tangents (∞ gradient)

Tangents & gradients

Tangent line - defined by y = mx + c where $m = \frac{dy}{dx}$ Normal line - \perp tangent $(m_{tan} \cdot m_{norm} = -1)$ Secant = $\frac{f(x+h)-f(x)}{h}$

Strictly increasing/decreasing

For x_2 and x_1 where $x_2 > x_1$:

- strictly increasing where $f(x_2) > f(x_1)$ or f'(x) > 0
- strictly decreasing where $f(x_2) < f(x_1)$ or f'(x) < 0
- Endpoints are included, even where gradient = 0

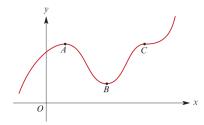
Solving on CAS

In main: type function. Interactive \rightarrow Calculation \rightarrow Line \rightarrow (Normal | Tan line)

In graph: define function. Analysis \rightarrow Sketch \rightarrow (Normal | Tan line). Type x value to solve for a point. Return to show equation for line.

Stationary points

Stationary where m = 0. Find derivative, solve for $\frac{dy}{dx} = 0$



Local maximum at point A

- f'(x) > 0 left of A
- f'(x) < 0 right of A

Local minimum at point B

- f'(x) < 0 left of B
- f'(x) > 0 right of B

Stationary point of inflection at C

Function derivatives

Function derivatives	
f(x)	f'(x)
kx^n	knx^{n-1}
$g(x) \pm h(x)$	$g'(x) \pm h'(x)$
c	0
$\frac{u}{v}$	$(v\frac{du}{dx} - u\frac{dv}{dx}) \div v^2$
uv	$u\frac{dv}{dx} + v\frac{du}{dx}$
$f\circ g$	$\frac{dy}{du} \cdot \frac{du}{dx}$
$\sin ax$	$a\cos ax$
$\sin(f(x))$	$f'(x) \cdot \cos(f(x))$
$\cos ax$	$-a\sin ax$
$\cos(f(x))$	$f'(x)(-\sin(f(x)))$
e^{ax}	ae^{ax}
$\log_e ax$	$\frac{1}{x}$
$\log_e f(x)$	$\frac{f'(x)}{f(x)}$