Inverse functions

Functions

- vertical line test
- each x value produces only one y value

One to one functions

- $f(x)$ is one to one if $f(a) \neq f(b)$ if $a, b \in \operatorname{dom}(f)$ and $a \neq b$
\Longrightarrow unique y for each $x\left(\sin x\right.$ is not $1: 1, x^{3}$ is)
- horizontal line test
- if not one to one, it is many to one

Deriving f^{-1}

- if $f(g(x))=x$, then g is the inverse of f
- reflection across $y-x$
- $\operatorname{ran} f=\operatorname{dom} f^{-1}, \quad \operatorname{dom} f=\operatorname{ran} f^{-1}$
- inverse \neq inverse function (i.e. inverse must pass vertical line test)
$\Longrightarrow f^{-1}(x)$ exists $\Longleftrightarrow f(x)$ is one to one
- $f^{-1}(x)=f(x)$ intersections may lie on line $y=x$

Requirements for showing working for f^{-1}

1. start with" let $y=f(x)$ "
2. must state "take inverse" for line where y and x are swapped
3. do all working in terms of $y=\ldots$
4. for square root, state \pm solutions then show restricted
5. for inverse function, state in function notation
