Unit 3 Revision Lecture

Monash University presented by Kevin McMenamin

Andrew Lorimer
5 July 2019

1 Graphs

16 types of graph-put in reference book:

1. truncus
2. semicircle
3. hyperbola
4. \tan
5. sqrt
6. \sin
7. parabola
8. \cos
9. cubic
10. \log
11. quartic
12. \exp
13. linear
14. $x^{\frac{a}{b}}$
15. circle
16. $x^{\frac{-a}{b}}$

1.1 Power functions

- In first quadrant, shape of graph for $x>0 \cap y>0$ is either \sqrt{x} or x^{2}

1.2 Features of graphs

- Asymptotes
- Intercepts
- Stationary points
- Endpoints
- Other critical points
- Continuous or discontinuous

Key points

- All transformations can be described by matrices
- Inverse is a transformation
- Memorise approximate values of $e, \pi, \sqrt{2}, \sqrt{3}$
- Put 16 base graphs in reference book

2 Transformations

Order: \quad Reflect \longrightarrow Dilate \longrightarrow Translate

2.1 Two forms

- note a and b can be positive or negative
- check validity of solutions for logarithms
- results in transformed equation $y^{\prime}=f^{\prime}(x)$

$$
\begin{aligned}
& y^{\prime}=a \cdot f\left(\frac{1}{b}\left(x^{\prime}-c\right)\right)+d \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
b & 0 \\
0 & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right]}
\end{aligned}
$$

Key points

- All transformations can be described by matrices
- Inverse is a transformation
- Check validity of $\log _{a} x$ solutions/transformations

3 Calculus

Possible questions:

- Average rate of change
- Instantaneous rate of change
- Tangent line
- Normal line
- Features of gradient function
- Degree
- Orientation
- Format
- Turning points
- Inflection points
- Asymptotes
- Find original function from derivative
\longrightarrow Use information to find unknowns
- Application questions - e.g. Pythagoras, trig. functions, measurement, given eqn

3.1 Integration

3.1.1 Polynomials

$$
\begin{gathered}
f(x)=\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c, \quad n \neq-1 \\
f(x)=\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c, \quad n \neq-1
\end{gathered}
$$

3.1.2 Exponentials

$$
f(x)=\int e^{a x+b} d x=\frac{e^{a x+b}}{a}+c
$$

3.1.3 Logarithms

ignore modulus for methods

$$
\begin{gathered}
f(x)=\int \frac{1}{x} d x=\ln |x|+c \\
f(x)=\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+c \\
f(x)-\int \frac{h^{\prime}(x)}{h(x)} d x=\ln |h(x)|+c
\end{gathered}
$$

(general form)
3.1.4 Trigonometric functions

$$
\begin{aligned}
& f(x)=\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c \\
& f(x)=\int \sin (a x+b) d x=-\frac{1}{a} \sin (a x+b)+c \\
& f(x)=\int \sec ^{2}(a x+b) d x=\frac{1}{a} \tan (a x+b)+c
\end{aligned}
$$

3.2 Area under curves

- Upper rectangles (overestimate) vs. lower rectangles (underestimate)
- Rotate (invert) graph to make it easier, e.g. $y=\sqrt{x} \longrightarrow x=y^{2}$

Key points

- For an antiderivative, $\quad+c \quad \forall c \in \mathbb{R} \quad$ is also acceptable
- Practice multi-part problems e.g:
a) Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x \sin x$. Find $f^{\prime}(x)$.
b) Use the result of (a) to find the value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} x \cos x d x$ in the form $a \pi+b$.

4 Probability

$$
\begin{aligned}
\operatorname{Pr}(A \cup B)= & \operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\
& \operatorname{Pr}(A \cup B)=0
\end{aligned}
$$

(mutually exclusive)

4.1 Conditional probability

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B) \\
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)
\end{gathered} \text { (multiplication theorem) }
$$

4.2 Discrete random distributions

Any experiment or activity involving chance will have a probability associated with each result or outcome. If the outcomes have a reference to discrete numeric values (outcomes that can be counted), and the result is unknown, then the activity is a discrete random probability distribution.

4.2.1 Discrete probability distributions

If an activity has outcomes whose probability values are all positive and less than one $(\Longrightarrow 0 \leq p(x) \leq 1)$, and for which the sum of all outcome probabilities is unity $\left(\Longrightarrow \sum p(x)=1\right)$, then it is called a probability distribution or probability mass function.

- Probability distribution graph - a series of points on a cartesian axis representing results of outcomes. $\operatorname{Pr}(X=x)$ is on y-axis, x is on x axis.
- Mean μ-measure of central tendency. Balance point or expected value of a distribution. Centre of a symmetrical distribution.
- Variance σ^{2} - measure of spread of data around the mean. Not the same magnitude as the original data. Represented by $\sigma^{2}=\operatorname{Var}(x)=\sum(x=\mu)^{2} \times p(x)=\sum(x-\mu)^{2} \times \operatorname{Pr}(X=x)$. Alternatively: $\sigma^{2}=\operatorname{Var}(X)=\sum x^{2} \times p(x)-\mu^{2}$
- Standard deviation σ - measure of spread in the original magnitude of the data. Found by taking square root of the variance: $\sigma=\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}$

4.3 Binomial distribution (Bernoulli trials)

A type of discrete probability distribution. This distribution has the following characteristics:

1. Samples are taken from a population size that remains constant (sampling with replacement)
2. Every result or trial can be classed as either a success or failure
3. The probability of a succcess is the same from one trial to the next, notated by p
4. The probability of a failure is the complement of the probability of a success, notated by $1-p$
5. There are a finite number of trials that define the sample size, notated by n

4.3.1 Bernoulli trials

Same properties as above. Number of successes in a finite number of Bernoulli trials is defined as the binomial distribution. The distribution can take the form:

$$
X \sim \operatorname{Bi}(n, p)
$$

Then, the probability values for each value of X follow the rule:

$$
p(x)=\binom{n}{x}(p)^{x}(1-p)^{n-x}
$$

4.4 Continuous random distributions

If the outcomes of an activity have a reference to continuous numeric values (outcomes that can be measured), then the activity is associated with a continuous probability distribution. The probabilities are calculuated by finding the area under the graph between the required x values (integrate).
The probability of a single outcome value does not exist for continuous probability distributions.

4.5 Continuous probability distributions

If an experiment or activity has a function whose values are all positive $(\Longrightarrow f(x) \geq 0 \forall x)$, and for which the area under the graph between the lowest outcome value and the greatest outcome value is unity (\Longrightarrow $\int_{\text {lower }}^{\text {upper }} f(x) d x=1$), then it is called a probability density function.
Example probability density function: $f(x)= \begin{cases}k\left(9-x^{2}\right), & 0 \leq x \leq 3 \\ 0, & \text { elsewhere }\end{cases}$

Figure 1: Two general normal distributions

4.6 Normal distributions

A very specific and special continuous probability distribution. Characteristics:

- Many sets of data occurring naturally and taken randomly will have a normal distribution
- No single outcome value can be calculated
- Probabilities are found between certain outcome values of the distribution
- The values of the distribution are symmetrical around the mean (μ) and form a bell-shaped curve
- The distribution is best described using its central or mean value, μ, and its measure of spread, σ
- The distribution can take the form $X \sim N\left(\mu, \sigma^{2}\right)$

General normal distribution	Standard normal distribution
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$

