1 Probability

Probability theorems

$$
\left.\begin{array}{rrr}
\text { Union: } & \operatorname{Pr}(A \cup B) & =\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\
\text { Multiplication theorem: } & \operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B) \\
\text { Conditional: } & \operatorname{Pr}(A \mid B) & =\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\text { Law of total probability: } & & \operatorname{Pr}(A)
\end{array}\right)=\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)+\operatorname{Pr}\left(A \mid B^{\prime}\right) \cdot \operatorname{Pr}\left(B^{\prime}\right)
$$

Mutually exclusive $\Longrightarrow \operatorname{Pr}(A \cup B)=0$
Independent events:

$$
\begin{aligned}
\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A) \times \operatorname{Pr}(B) \\
\operatorname{Pr}(A \mid B) & =\operatorname{Pr}(A) \\
\operatorname{Pr}(B \mid A) & =\operatorname{Pr}(B)
\end{aligned}
$$

Discrete random distributions

Any experiment or activity involving chance will have a probability associated with each result or outcome. If the outcomes have a reference to discrete numeric values (outcomes that can be counted), and the result is unknown, then the activity is a discrete random probability distribution.

Discrete probability distributions

If an activity has outcomes whose probability values are all positive and less than one ($\Longrightarrow 0 \leq p(x) \leq 1$), and for which the sum of all outcome probabilities is unity $\left(\Longrightarrow \sum p(x)=1\right)$, then it is called a probability distribution or probability mass function.

- Probability distribution graph - a series of points on a cartesian axis representing results of outcomes. $\operatorname{Pr}(X=x)$ is on y-axis, x is on x axis.
- Mean μ or expected value $E(X)$ - measure of central tendency. Also known as balance point. Centre of a symmetrical distribution.

$$
\begin{aligned}
\bar{x}=\mu=E(X) & =\frac{\Sigma[x \cdot f(x)]}{\Sigma f} & \text { (where } f=\text { absolute frequency) } \\
& =\sum_{i=1}^{n}\left[x_{i} \cdot \operatorname{Pr}\left(X=x_{i}\right)\right] & \quad \text { (for } n \text { values of } x \text {) } \\
& =\int_{-\infty}^{\infty}(x \cdot f(x)) d x & \quad \text { (for pdf } f \text {) }
\end{aligned}
$$

- Mode - most popular value (has highest probability of X values). Multiple modes can exist if $>1 X$ value have equal-highest probability. Number must exist in distribution.
- Median m - the value of x such that $\operatorname{Pr}(X \leq m)=\operatorname{Pr}(X \geq m)=0.5$. If $m>0.5$, then value of X that is reached is the median of X. If $m=0.5=0.5$, then m is halfway between this value and the next. To find m, add values of X from smallest to alrgest until the sum reaches 0.5 .

$$
m=X \text { such that } \int_{-\infty}^{m} f(x) d x=0.5
$$

- Variance σ^{2} - measure of spread of data around the mean. Not the same magnitude as the original data.

For distribution $x_{1} \mapsto p_{1}, x_{2} \mapsto p_{2}, \ldots, x_{n} \mapsto p_{n}$:

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(x) & =\sum_{i=1}^{n} p_{i}\left(x_{i}-\mu\right)^{2} \\
& =\sum(x-\mu)^{2} \times \operatorname{Pr}(X=x) \\
& =\sum x^{2} \times p(x)-\mu^{2} \\
& =\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}
\end{aligned}
$$

- Standard deviation σ - measure of spread in the original magnitude of the data. Found by taking square root of the variance:

$$
\begin{aligned}
\sigma & =\operatorname{sd}(X) \\
& =\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

Expectation theorems

For some non-linear function g, the expected value $E(g(X))$ is not equal to $g(E(X))$.

$$
\begin{aligned}
E\left(X^{n}\right) & =\Sigma x^{n} \cdot p(x) \\
& \neq[E(X)]^{n} \\
E(a X \pm b) & =a E(X) \pm b \\
E(b) & =b \\
E(X+Y) & =E(X)+E(Y)
\end{aligned}
$$

(for constant $b \in \mathbb{R}$)
(for two random variables)

Variance theorems

$$
\operatorname{Var}(a X \pm b Y \pm c)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
$$

2 Binomial Theorem

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x^{1} y^{n-1}+\binom{n}{n} x^{0} y^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
\end{aligned}
$$

Patterns

1. powers of x decrease $n \rightarrow 0$
2. powers of y increase $0 \rightarrow n$
3. coefficients are given by nth row of Pascal's Triangle where $n=0$ has one term
4. Number of terms in $(x+a)^{n}$ expanded \& simplified is $n+1$

Combinatorics

$$
\text { Binomial coefficient: } \quad{ }^{n} \mathrm{C}_{r}=\binom{N}{k}
$$

- Arrangements $\binom{n}{k}=\frac{n!}{(n-r)}$
- Combinations $\binom{n}{k}=\frac{n!}{r!(n-r)!}$
- $\operatorname{Note}\binom{n}{k}=\binom{n}{k-1}$

On CAS: (soft keyboard) \rightarrow Advanced $\rightarrow \mathrm{nCr}(\mathrm{n}, \mathrm{cr})$

Pascal's Triangle

$$
n=
$$

0 1

| 6 | 1 | 6 | 15 | 20 | 15 | | 6 | | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 Binomial distributions

(aka Bernoulli distributions)

$$
\begin{aligned}
\text { Defined by } \quad X & \sim \operatorname{Bi}(n, p) \\
\Longrightarrow \operatorname{Pr}(X=x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\binom{n}{x} p^{x} q^{n-x}
\end{aligned}
$$

where:
n is the number of trials
There are two possible outcomes: S or F

$$
\begin{aligned}
& \operatorname{Pr}(\text { success })=p \\
& \operatorname{Pr}(\text { failure })=1-p=q
\end{aligned}
$$

Conditions for a binomial variable/distribution

1. Two possible outcomes: success or failure
2. Pr (success) is constant across trials (also denoted p)
3. Finite number n of independent trials

Solve on CAS

Main \rightarrow Interactive \rightarrow Distribution \rightarrow binomialPDf
Input x (no. of successes), numtrial (no. of trials), pos (probbability of success)
Properties of $X \sim \operatorname{Bi}(n, p)$

$$
\begin{aligned}
\text { Mean } & \mu(X) & =n p \\
\text { Variance } & \sigma^{2}(X) & =n p(1-p) \\
\text { s.d. } & \sigma(X) & =\sqrt{n p(1-p)}
\end{aligned}
$$

Applications of binomial distributions

$$
\operatorname{Pr}(X \geq a)=1-\operatorname{Pr}(X<a)
$$

4 Continuous probability

Continuous random variables

- a variable that can take any real value in an interval

Probability density functions

- area under curve $=1 \Longrightarrow \int f(x) d x=1$
- $f(x) \geq 0 \forall x$
- pdfs may be linear
- must show sections where $f(x)=0$ (use open/closed circles)

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

On CAS: Interactive \rightarrow Distribution \rightarrow normCdf.
For function in domain $a \leq x \leq b$:

$$
\begin{gathered}
\mathrm{E}(X)=\int_{a}^{b} x f(x) d x \\
\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}}
\end{gathered}
$$

