Transformations

Order of operations: DRT

dilations — reflections — translations

Transforming x^n to $a(x-h)^n + K$

- dilation factor of |a| units parallel to y-axis or from x-axis
- if a < 0, graph is reflected over x-axis
- translation of k units parallel to y-axis or from x-axis
- translation of h units parallel to x-axis or from y-axis
- for $(ax)^n$, dilation factor is $\frac{1}{a}$ parallel to x-axis or from y-axis
- when 0 < |a| < 1, graph becomes closer to axis

Transforming f(x) to y = Af[n(x+c)] + b

Applies to exponential, log, trig, e^x , polynomials. Functions must be written in form y = Af[n(x+c)] + b

- dilation by factor |A| from x-axis (if A < 0, reflection across y-axis)
- dilation by factor ¹/_n from y-axis (if n < 0, reflection across x-axis)
- translation of c units from y-axis (x-shift)
- translation of b units from x-axis (y-shift)

Dilations

Two pairs of equivalent processes for y = f(x):

- 1. Dilating from x-axis: $(x, y) \rightarrow (x, by)$
 - Replacing y with $\frac{y}{b}$ to obtain y = bf(x)
- 2. Dilating from y-axis: $(x, y) \rightarrow (ax, y)$
 - Replacing x with $\frac{x}{a}$ to obtain $y = f(\frac{x}{a})$

For graph of $y = \frac{1}{x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y = \frac{a}{x}$, graph is contracted rather than dilated.

Matrix transformations

Find new point (x', y'). Substitute these into original equation to find image with original variables (x, y).

Reflections

- Reflection in axis = reflection over axis = reflection across axis
- Translations do not change

Translations

For y = f(x), these processes are equivalent:

- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of y = f(x)
- replacing x with x h and y with y k to obtain y - k = f(x - h)

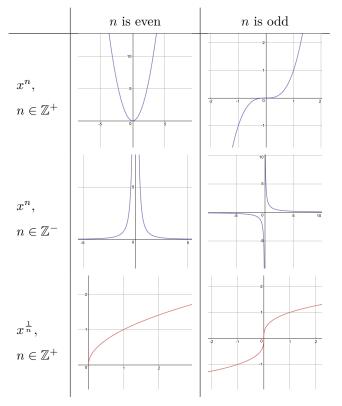
Power functions

Strictly increasing: $f(x_2) > f(x_1)$ where $x_2 > x_1$ (including x = 0)

Odd and even functions

Even when f(x) = -f(x)Odd when -f(x) = f(-x)

Function is even if it can be reflected across y-axis $\implies f(x) = f(-x)$ Function $x^{\pm \frac{p}{q}}$ is odd if q is odd



 $x^{\frac{p}{q}}$ where $p,q \in \mathbb{Z}^+$

$$x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

- if p > q, the shape of x^p is dominant
- if p < q, the shape of $x^{\frac{1}{q}}$ is dominant
- points (0,0) and (1,1) will always lie on graph

• Domain is:
$$\begin{cases} \mathbb{R} & \text{if } q \text{ is odd} \\ \mathbb{R}^+ \cup \{0\} & \text{if } q \text{ is even} \end{cases}$$

Piecewise functions

e.g.
$$f(x) = \begin{cases} x^{1/3}, & x \le 0\\ 2, & 0 < x < 2\\ x, & x \ge 2 \end{cases}$$

Open circle: point included **Closed circle:** point not included

Operations on functions

For $f \pm g$ and $f \times g$: $\operatorname{dom}' = \operatorname{dom}(f) \cap \operatorname{dom}(g)$

Addition of linear piecewise graphs: add y-values at key points

Product functions:

- product will equal 0 if f = 0 or g = 0
- $f'(x) = 0 \leq g'(x) = 0 \Rightarrow (f \times g)'(x) = 0$

Composite functions

 $(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$

 $x^{\frac{-1}{n}}$ where $n \in \mathbb{Z}^+$

Mostly only on CAS.

We can write
$$x^{\frac{-1}{n}} = \frac{1}{x^{\frac{1}{n}}} = \frac{1}{n\sqrt{x}}$$
n.
Domain is:
$$\begin{cases} \mathbb{R} \setminus \{0\} & \text{if } n \text{ is odd} \\ \mathbb{R}^+ & \text{if } n \text{ is even} \end{cases}$$

If n is odd, it is an odd function.