Fields

Andrew Lorimer

Non-contact forces

- electric fields (dipoles & monopoles)
- magnetic fields (dipoles only)
- gravitational fields (monopoles only)
- monopoles: field lines radiate towards central object
- dipoles field lines go from + to -, or N to S
- closer field lines means larger force
- dot means out of page, cross means into page

Gravity

$$F_g = G \frac{m_1 m_2}{r^2} \qquad \qquad ({\rm grav.~force})$$

$$g = \frac{F_g}{m} = G \frac{M_{\text{planet}}}{r^2}$$
 (grav. acceleration)

 $E_q = mg\Delta$

$$\Delta h$$
 (grav. potential energy)

F = qvB

Right hand slap: field, current, force are \perp **Flux-time graphs:** gradient $\times n = \text{emf}$ **Transformers:** core strengthens & focuses Φ

(force on moving charged particles)

Electric fields

DC: split ring (one ring split into two halves) **AC:** slip ring (separate rings with constant contact)

$$W = \Delta E_g = Fx$$

(work)

Area under force-distance graph = $\Delta G.P.E$ Area under field-distance graph = $\Delta G.P.E/\text{kg}$ **Lenz's law:** "-n" in Faraday - emf opposes $\Delta \Phi$ Eddy currents: counter movement within a field **Right hand grip:** thumb points to north or I