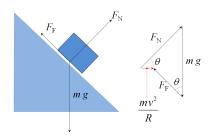
Physics Andrew Lorimer


1 Motion

 $m/s \times 3.6 = km/h$

Inclined planes

 $F = mg\sin\theta - F_{\text{frict}} = ma$

Banked tracks

$$\theta = \tan^{-1} \frac{v^2}{rq}$$

 ΣF always acts towards centre (horizontally)

$$\Sigma F = F_{\text{norm}} + F_{\text{g}} = \frac{mv^2}{r} = mg \tan \theta$$

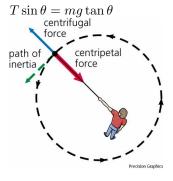
Design speed $v = \sqrt{gr \tan \theta}$
 $n \sin \theta = mv^2 \div r, \quad n \cos \theta = mg$

Work and energy

$$W = Fs = Fs \cos \theta = \Delta \Sigma E$$

 $E_K = \frac{1}{2}mv^2$ (kinetic)
 $E_G = mgh$ (potential)
 $\Sigma E = \frac{1}{2}mv^2 + mgh$ (energy transfer)

Horizontal circular motion


$$v = \frac{2\pi r}{T}$$

$$f = \frac{1}{T}, \quad T = \frac{1}{f}$$

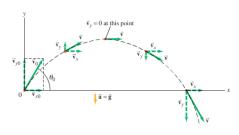
$$a_{centrip} = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

$$\Sigma F, a \text{ towards centre, } v \text{ tangential}$$

$$\Sigma F = F_{centrip} = \frac{mv^2}{r} = \frac{4\pi^2 rm}{T^2}$$

Vertical circular motion

$$T + mg = \frac{mv^2}{r}, v = \sqrt{rg} \text{ (top)}$$


$$T - mg = \frac{mv^2}{r}, v = \sqrt{2rg} \text{ (bottom)}$$

$$E_{K\text{bottom}} = E_{K\text{top}} + mgh$$

Projectile motion

- v_x is constant: $v_x = \frac{s}{t}$
- use suvat to find t from y-component
- vertical component gravity: $a_y = -g$

$v = \sqrt{v_x^2 + v_y^2}$	vectors
$h = \frac{u^2 \sin \theta^2}{2g}$	max height
$x = ut\cos\theta$	Δx at t
$y = ut\sin\theta - \frac{1}{2}gt^2$	height at t
$t = \frac{2u\sin\theta}{q}$	time of flight
$d = \frac{v^2}{a} \sin \theta$	horiz. range

Pulley-mass system

 $a = \frac{m_2 g}{m_1 + m_2}$ where m_2 is suspended $\Sigma F = m_2 g - m_1 g = \Sigma ma$ (solve)

Graphs

- Force-time: $A = \Delta \rho$
- Force-disp: A = W
- Force-ext: m = k, $A = E_{spr}$
- F_g -dist: $A = \Delta$ gpe
- Field-dist: $A = \Delta \operatorname{gpe} / \operatorname{kg}$

Hooke's law

$$F=-kx$$
 (intercepts origin) elastic potential energy $=\frac{1}{2}kx^2$ $x=\frac{2mg}{k}$

Vertical:
$$\Delta E = \frac{1}{2}kx^2 + mgh$$

Motion equations

$$v = u + at$$

$$x$$

$$x = \frac{1}{2}(v + u)t$$

$$x = ut + \frac{1}{2}at^{2}$$

$$x = vt - \frac{1}{2}at^{2}$$

$$u$$

$$v^{2} = u^{2} + 2ax$$

$$t$$

Momentum

 $\rho=mv$ impulse $=\Delta\rho,\quad F\Delta t=m\Delta v$ $\Sigma(mv_0)=(\Sigma m)v_1$ (conservation) if elastic:

$$\sum_{i=1}^{n} E_K(i) = \sum_{i=1}^{n} (\frac{1}{2} m_i v_{i0}^2) = \frac{1}{2} \sum_{i=1}^{n} (m_i) v_f^2$$

2 Relativity

Postulates

- 1. Laws of physics are constant in all intertial reference frames
- 2. Speed of light c is the same to all observers (Michelson-Morley)
- \therefore t must dilate as speed changes

high-altitude particles: t dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)

Inertial reference frame a = 0Proper time $t_0 \mid \text{length } l_0$ measured by observer in same frame as events

Lorentz factor

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad v = c\sqrt{1 - \frac{1}{\gamma^2}}$$

 $t = t_0 \gamma$ (t longer in moving frame) $l = \frac{l_0}{\gamma}$ (l contracts || v: shorter in moving frame) $m = m_0 \gamma$ (mass dilation)

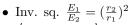
Energy and work

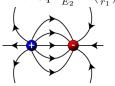
Total energy = mass energy $E_{\rm rest} = mc^2, \quad E_K = (\gamma - 1)mc^2$ $E_{\rm total} = \gamma E_{\rm rest} = E_K + E_{\rm rest} = \gamma mc^2$ $W = \Delta E = \Delta mc^2 = (\gamma - 1)m_{\rm rest}c^2$

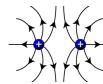
Relativistic momentum

$$\rho = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma mv = \gamma \rho_0$$

 $\rho \to \infty \text{ as } v \to c$


v = c is impossible (requires $E = \infty$)


$$v = \frac{\rho}{m\sqrt{1 + \frac{p^2}{m^2c^2}}}$$


3 Fields and power

Non-contact forces

- electric (dipoles & monopoles)
- magnetic (dipoles only)
- gravitational (monopoles only, $F_g = 0$ at mid, attractive only)
- monopoles: lines towards centre
- dipoles: field lines $+ \rightarrow -$ or $N \rightarrow S$ (two magnets) or $\rightarrow N$ (single)
- closer field lines means larger force
- dot: out of page, cross: into page
- +ve corresponds to N pole

Gravity

$$F_g = G \frac{m_1 m_2}{r^2}$$
 (grav. force)

$$g = \frac{F_g}{m_2} = G \frac{m_1}{r^2} \qquad \text{(field of } m_1\text{)}$$

$$E_q = mg\Delta h$$
 (gpe)

$$W = \Delta E_a = Fx \qquad \text{(work)}$$

$$w = m(g - a)$$
 (app. weight)

Satellites

$$v = \sqrt{\frac{GM}{r}} = \sqrt{gr} = \frac{2\pi r}{T}$$

$$T = \sqrt{\frac{4\pi^2 r^3}{GM}} = 2\pi \sqrt{\frac{r_{\rm alt}}{g_{\rm alt}}} \quad ({\rm period})$$

$$r = \sqrt[3]{\frac{GMT^2}{4\pi^2}}$$
 (radius)

Magnetic fields

$$F = qvB$$
 (F on moving q)

$$F = IlB$$
 (F of B on I)

$$B = \frac{mv}{qr} \qquad \text{(field strength on e-)}$$

$$r = \frac{mv}{qB}$$
 (radius of q in B)

$$\text{if } B \not\!\!\perp\!\! A, \Phi \to 0 \quad , \quad \text{if } B \parallel A, \Phi = 0$$

Particle acceleration

$$1 \, \mathrm{eV} = 1.6 \times 10^{-19} \, \mathrm{J}$$

e- accelerated with $x \vee y$ is given $x \vee y$

$$W = \frac{1}{2}mv^2 = qV$$
 (field or points)

$$V_{\text{point}} = (V_1 - V_2) \div 2 \text{ (if midpoint)}$$

$$v = \sqrt{\frac{2qV}{m}}$$
 (velocity of particle)

Circular path: $F \perp B \perp v$

Electric fields

$$F = qE(= ma)$$
 (strength)

$$F = k \frac{q_1 q_2}{r^2}$$
 (force between $q_{1,2}$)

$$E = k \frac{q}{r^2}$$
 (field on point charge)

$$E = \frac{V}{d}$$
 (field between plates)

$$F = BInl$$
 (force on a coil)

$$\Phi = B_{\perp} A$$
 (magnetic flux)

$$\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t} = Blv \quad \text{(induced emf)}$$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p} \quad \text{(xfmr coil ratios)}$$

Lenz's law: $I_{\rm emf}$ opposes $\Delta\Phi$

(emf creates I with associated field that opposes $\Delta\Phi)$

Eddy currents: counter movement within a field

Right hand grip: thumb points to I (single wire) or N (solenoid / coil)

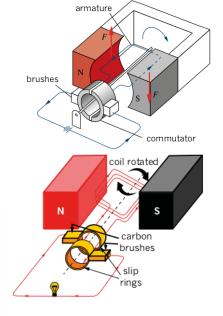
Magnet through ring: consider g

Flux-time graphs: $m \times n = \text{emf}$. If f increases, ampl. & f of $\mathcal E$ increase

Xfmr core strengthens & focuses Φ

Power transmission

$$V_{\rm rms} = \frac{V_{\rm p}}{\sqrt{2}} = \frac{V_{\rm p \to p}}{2\sqrt{2}}$$

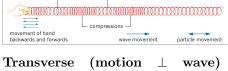

$$P_{\rm loss} = \Delta V I = I^2 R = \frac{\Delta V^2}{R}$$

$$V_{\rm loss} = IR$$

Use high-V side for correct $|V_{drop}|$

- Parallel V is constant
- ullet Series V shared within branch

Motors

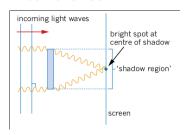


Force on I-carying wire, not Cu F = 0 for front back of coil (parallel) Any angle > 0 will produce force **DC:** split ring (two halves)

AC: slip ring (separate rings with constant contact)

4 Waves

nodes: fixed on graph amplitude: max disp. from y = 0 rarefactions and compressions mechanical: transfer of energy without net transfer of matter



 $T = \frac{1}{f} \quad \text{(period: time for one cycle)}$ $v = f\lambda \quad \text{(speed: displacement / sec)}$ $f = \frac{c}{\lambda} \quad \text{(for } v = c)$

Doppler effect

When P_1 approaches P_2 , each wave w_n has slightly less distance to travel than w_{n-1} . w_n reaches observer sooner than w_{n-1} ("apparent" λ).

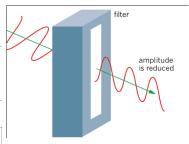
Interference

Poissons's spot supports wave theory (circular diffraction)

Standing waves - constructive int. at resonant freq. Rebound from ends. Coherent - identical frequency, phase, direction (ie strong directional). e.g. laser

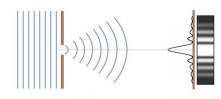
Incoherent - e.g. incandescent/LED

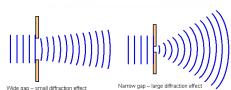
Harmonics


1st harmonic = fundamental for nodes at both ends:

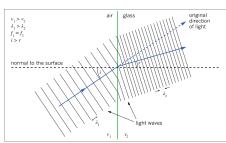
$$\lambda = 2l \div n$$
 $f = nv \div 2l$

for node at one end (n is odd):


 $\begin{array}{ll} \lambda=4l\div n & f=nv\div 4l\\ \text{alternatively, } \lambda=\frac{4l}{2n-1} \text{ where } n\in \mathbb{Z}\\ \text{and } n+1 \text{ is the next possible harmonic} \end{array}$


Polarisation

Transverse only. Reduces total A.


Diffraction

- Constructive: $pd = n\lambda, n \in \mathbb{Z}$
- Destructive: $pd = (n \frac{1}{2})\lambda, n \in \mathbb{Z}$
- Path difference: $\Delta x = \frac{\lambda l}{d}$ where l = distance from source to observer d = separation between each wave source (e.g. slit) $= S_1 S_2$
- diffraction $\propto \frac{\lambda}{d} \propto$ fringe spacing
- $d(|\overline{S_1W}| |\overline{S_2W}|) = d\Delta x = \lambda l$
- significant diffraction when $\frac{\lambda}{\Delta x} \geq 1$
- diffraction creates distortion (electron optical microscopes)

Refraction

When a medium changes character, light is reflected, absorbed, and transmitted. λ changes, not f. n changes slightly with f (dispersion) angle of incidence θ_i = angle of reflection θ_r

Critical angle $\theta_c = \sin^{-1} \frac{n_2}{n_1}$ Snell's law $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $v_1 \div v_2 = \sin \theta_1 \div \sin \theta_2$ $n_1 v_1 = n_2 v_2$ $n = \frac{c}{v}$

5 Light and Matter

Planck's equation

$$E = hf = \frac{hc}{\lambda} = \rho c = qV$$

$$h = 6.63 \times 10^{-34} \text{ Js} = 4.14 \times 10^{-15} \text{ eVs}$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

De Broglie's theory

$$\lambda = \frac{h}{\rho} = \frac{h}{mv} = \frac{h}{m\sqrt{\frac{2W}{m}}}$$
$$\rho = \frac{hf}{c} = \frac{h}{\lambda} = mv, \quad E = \rho c$$
$$v = \sqrt{2E_K \div m}$$

- cannot confirm with double-slit (slit $< r_{\text{proton}}$)
- confirmed by e- and x-ray patterns

Force of electrons

$$\begin{split} F &= \frac{2P_{\rm in}}{c} \\ \text{photons} \ / \ \text{sec} &= \frac{\text{total energy}}{\text{energy} \ / \ \text{photon}} \\ &= \frac{P_{\rm in} \lambda}{hc} = \frac{P_{\rm in}}{hf} \end{split}$$

X-ray electron interaction

- e- stable if $mvr = n\frac{h}{2\pi}$ where $n \in \mathbb{Z}$ and r is radius of orbit
- $\therefore 2\pi r = n \frac{h}{mv} = n\lambda$ (circumference)
- if $2\pi r \neq n \frac{h}{mv}$, no standing wave
- if e- = x-ray diff patterns, $E_{\text{e-}} = \frac{\rho^2}{2m} = (\frac{h}{\lambda})^2 \div 2m$

Photoelectric effect

- V_{supply} does not affect photocurrent
- $V_{\text{sup}} > 0$: attracted to +ve
- $V_{\text{sup}} < 0$: attracted to -ve, $I \to 0$
- \bullet v of e- depends on shell
- $\max I$ (not V) depends on intensity

Threshold frequency f_0

min f for photoelectron release. $f < f_0$, no photoelectrons.

Work function $\phi = hf_0$

 $\min E$ for photoelectron release. determined by strength of bonding. Units: eV or J.

$$V_0 = E_K$$
 in eV

dashed line below $E_K = 0$

Stopping potential V_0 for min I

$$V_0 = h_{\rm eV}(f - f_0)$$

Opposes induced photocurrent

Graph features

	m	x-int	y-int
$f \cdot E_K$	h	f_0	$-\phi$
$V \cdot I$		V_0	intensity (
$f \cdot V$	$\frac{h}{q}$	f_0	$\frac{-\phi}{q}$

Spectral analysis

- $\Delta E = hf = \frac{hc}{\lambda}$ between ground / excited state
- E and f of photon: $E_2 E_1 = hf =$ quantised energy

- Ionisation energy min E required 6to remove e-
- EMR is absorbed/emitted when $E_{\text{K-in}} = \Delta E_{\text{shells}}$ (i.e. $\lambda = \frac{hc}{\Delta E_{\text{shells}}}$)
- No. of lines include all possible states. $\Delta E \neq |\Delta E|$

Uncertainty principle

if $\Delta x \approx \frac{\text{slit width}}{2}$

measurement: ρ transferred to eslit: possibility of diff. before slit

Wave-particle duality

wave model

- \bullet any f works, given t
- Kinetic energy $\mathbf{E}_K = hf \phi = qV_0$ predicts delay between incidence and ejection
 - speed depends on medium
 - supported by bright spot in centre
 - $\lambda = \frac{hc}{F}$

particle model

- rate of photoelectron release \propto inten-
- no time delay one photon releases one electron
- threshold frequency
- double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
- light exerts force
- light bent by gravity

Experimental design

Absolute uncertainty Δ

(same units as quantity)

$$\Delta(m) = \frac{\mathcal{E}(m)}{100} \cdot m$$

$$(A \pm \Delta A) + (B \pm \Delta A) = (A + B) \pm (\Delta A + \Delta B)$$

$$(A\pm\Delta A)-(B\pm\Delta A)=(A-B)\pm(\Delta A+\Delta B)$$

$$c(A \pm \Delta A) = cA \pm c\Delta A$$

Relative uncertainty \mathcal{E} (unitless)

$$\mathcal{E}(m) = \frac{\Delta(m)}{m} \cdot 100$$

$$(A \pm \mathcal{E}A) \cdot (B \pm \mathcal{E}B) = (A \cdot B) \pm (\mathcal{E}A + \mathcal{E}B)$$

$$(A \pm \mathcal{E}A) \div (B \pm \mathcal{E}B) = (A \div B) \pm (\mathcal{E}A + \mathcal{E}B)$$

$$(A \pm \mathcal{E}A)^n = (A^n \pm n\mathcal{E}A)$$

$$c(A \pm \mathcal{E}A) = cA \pm \mathcal{E}A$$

Uncertainty of a measurement is $\frac{1}{2}$ the smallest division

Precision - concordance of values

Accuracy - closeness to actual value

Random errors - unpredictable, reduced by more tests

Systematic errors - not reduced by more tests

Uncertainty - margin of potential er-

Error - actual difference

Hypothesis - can be tested experimentally

Model - evidence-based but indirect representation

UV IRvisible radio $_{
m micro}$ X-rays γ-rays