1 Dynamics

Resolution of forces

Resultant force is sum of force vectors

In angle-magnitude form

$$
\text { Cosine rule: } \quad c^{2}=a^{2}+b^{2}-2 a b \cos \theta \quad \text { Sine rule: } \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

In $i-j$ form
Vector of $a \mathrm{~N}$ at θ to x axis is equal to $a \cos \theta \boldsymbol{i}+a \sin \theta \boldsymbol{j}$. Convert all force vectors then add.
To find angle of an $a \boldsymbol{i}+b \boldsymbol{j}$ vector, use $\theta=\tan ^{-1} \frac{b}{a}$

Resolving in a given direction

The resolved part of a force P at angle θ is has magnitude $P \cos \theta$
To convert force $\| \overrightarrow{O A}$ to angle-magnitude form, find component $\perp \overrightarrow{O A}$ then:

$$
\begin{aligned}
|\boldsymbol{r}| & =\sqrt{(\| \overrightarrow{O A})^{2}+(\perp \overrightarrow{O A})^{2}} \\
\theta & =\tan ^{-1} \frac{\perp \overrightarrow{O A}}{\| \overrightarrow{O A}}
\end{aligned}
$$

Newton's laws

1. Velocity is constant without ΣF
2. $\frac{d}{d t} \rho \propto \Sigma F \Longrightarrow \boldsymbol{F}=m \boldsymbol{a}$
3. Equal and opposite forces

Weight

A mass of $m \mathrm{~kg}$ has force of $m g$ acting on it

Momentum ρ

$$
\rho=m v
$$

(units $\mathrm{kg} \mathrm{m} / \mathrm{s}$ or Ns)

Reaction force R

- With no vertical velocity, $R=m g$
- With vertical acceleration, $|R|=m|a|-m g$
- With force F at angle θ, then $R=m g-F \sin \theta$

Friction

$$
F_{R}=\mu R
$$

Inclined planes

$$
\boldsymbol{F}=|\boldsymbol{F}| \cos \theta \boldsymbol{i}+|\boldsymbol{F}| \sin \theta \boldsymbol{j}
$$

- Normal force R is at right angles to plane
- Let direction up the plane be \boldsymbol{i} and perpendicular to plane \boldsymbol{j}

Connected particles

- Suspended pulley: tension in both sections of rope are equal
$|a|=g \frac{m_{1}-m_{2}}{m_{1}+m_{2}}$ where m_{1} accelerates down
With tension:

$$
\left\{\begin{array}{l}
m_{1} g-T=m_{1} a \\
T-m_{2} g=m_{2} a
\end{array} \quad \Longrightarrow m_{1} g-m_{2} g=m_{1} a+m_{2} a\right.
$$

- String pulling mass on inclined pane: Resolve parallel to plane

$$
T-m g \sin \theta=m a
$$

- Linear connection: find acceleration of system first
- Pulley on right angle: $a=\frac{m_{2} g}{m_{1}+m_{2}}$ where m_{2} is suspended (frictionless on both surfaces)
- Pulley on edge of incline: find downwards force W_{2} and components of mass on plane

In this example,

note $T_{1} \neq T_{2}$:

Equilibrium

$$
\begin{gathered}
\frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c} \\
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
\end{gathered}
$$

Three methods:

1. Lami's theorem (sine rule)
2. Triangle of forces (cosine rule)
3. Resolution of forces ($\Sigma F=0$ - simultaneous)

On CAS

To verify: Geometry tab, then select points with normal cursor. Click right arrow at end of toolbar and input point, then lock known constants.

Variable forces (DEs)

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

