Graphing techniques

Reciprocal continuous functions

If $y=f(x)$, the reciprocal function is:

$$
y=\frac{1}{f(x)}
$$

As $\quad f(x) \rightarrow \pm \infty, \quad \frac{1}{f(x)} \rightarrow 0^{ \pm}$(vert asymptote at $f(x)=0$)

- reciprocal functions are always on the same side of $x=0$
- if $y=f(x)$ has a local max \mid min at $x=1$, then $y=\frac{1}{f(x)}$ has a local max \mid min at $x=a$
- point of inflection at $P(1,1)$

Locus of points

- set of points that satisfy a given condition
- path traced by a point that moves according to a condition
- graph on CAS - conics

Circular loci

point $P(x, y)$ has a constant distance r from point $C(a, b)$ (centre)

$$
\begin{gathered}
P C=r \\
(x-a)^{2}+(y-b)^{2}=r^{2}
\end{gathered}
$$

Linear loci

$$
\begin{gathered}
Q P=R P \\
\sqrt{\left(x_{Q}-q_{P}\right)^{2}+\left(y_{Q}-y_{P}\right)^{2}}=\sqrt{\left(x_{R}-x_{P}\right)^{2}+\left(y_{R}-y_{P}\right)^{2}}
\end{gathered}
$$

points Q and R are fixed and have a perpendicular bisector $Q R$. Therefore, any point on line $y=m x+c$ is equidistant from $Q P$ and $R P$.

Since the bisector of the line joining points Q and R is perpendicular to $\$ \mathrm{QR} \$$:

$$
m(Q R) \times m(R P)=-1
$$

Parabolic loci

$$
\begin{gathered}
P D=P F \\
|y-z|=\sqrt{\left(x-x_{F}\right)^{2}+\left(y-y_{F}\right)^{2}} \\
(y-z)^{2}=\left(x-x_{F}\right)^{2}+\left(y-y_{F}\right)^{2}
\end{gathered}
$$

Distance of point $P(x, y)$ from fixed point $F(a, b)$ is equal to the distance of P from $y=z \perp$.

Fixed point F is the focus (halfway between $y=z$ and $y=y_{P}$)

Fixed line $x=z$ is the directrix

Elliptical loci

Point P moves so that the sum of its distances from two fixed points F_{1} and F_{2} is a constant k.

$$
F_{1} P+F_{2} P=k
$$

Two foci at F_{1} and F_{2}
Cartesian equation for ellipses:

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

centered at (h, k). Width is $2 a$, height is $2 b$.

Transformations

$$
(x, y) \rightarrow(x \prime, y \prime)
$$

where $x \prime$ and $y \prime$ are the transformation factors (dilation away from x-axis means coefficient of y increases in $y \prime$, and vice versa).

Transformed equation is the same as initial equation with each term divided by its dilation coefficients (must be in terms of $x \prime$ and $y \prime$).
e.g.
$x^{2}+y^{2}=1$ is dilated 3 from $x, 5$ from y. Transformation rule is $\left(x \prime, y^{\prime}\right)=(5 x, 3 y) x=\frac{x^{\prime}}{5}, \quad y=\frac{y^{\prime}}{3}$
Equation $x^{2}+y^{2}=1$ becomes

$$
\frac{(x \prime)^{2}}{25}+\frac{(y \prime)^{2}}{9}=1
$$

Hyperbolic loci

$$
\left|\left(F_{2} P-F_{1} P\right)\right|=k
$$

Cartesian equation for hyperbolas (a and b are dilation factors):

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Distance between vertices is $2 a$ Vertices given by ($h \pm$ a, k)

Asymptotes at $y= \pm \frac{b}{a}(x-h)+k$ To make hyperbola up/down rather than left/right, swap x and y
$y^{2}-x^{2}=1$ produces hyperbola shifted 90° (top and bottom of asymptotes)

Parametric equations

Parametric curve:

$$
x=f(t), \quad y=g(t)
$$

t is the parameter
To convert to cartesian, solve like simultaneous equations

Polar coordinates

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Spirals

$$
r=\frac{\theta}{n \pi}
$$

- solve intercepts for multiples of $\frac{\pi}{2}$ - or draw table of values for r and θ for each $\frac{n \pi}{2}$

Circles

$$
r=a
$$

Lines

Horizontal: $r=\frac{n}{\sin \theta}$ Vertical: $r=\frac{n}{\cos \theta}$

Cardioids

$$
r=a(n+\cos \theta)
$$

Roses

$$
r=\cos (k \theta)
$$

If k is odd, half of the petals will overlap (hence there are n petals)

If k is even, petals will not overlap (hence $2 n$ petals)

Solving polar graphs

solve in terms of r
e.g. $x=4$
$r \cos \theta=4$
$r=\frac{4}{\cos \theta}$
e.g. $y=x^{2}$
$r \sin \theta=r^{2} \cos ^{2} \theta$
$\sin \theta=r \cos ^{2} \theta$
$r=\frac{\sin \theta}{\cos ^{2} \theta}=\tan \theta \sec \theta$
e.g. $r=6 \cos \theta \quad$ (multiply by r)
$r^{2}=6 r \cos \theta$
$x^{2}+y^{2}=6 x$
complete the square

