Vectors

- vector: a directed line segment
- arrow indicates direction
- length indicates magnitude
- notated as $\vec{a}, \widetilde{A}, \vec{a}$
- column notation: $\left[\begin{array}{l}x \\ y\end{array}\right]$
- vectors with equal magnitude and direction are equivalent

Vector addition

$\boldsymbol{u}+\boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.
Addition is commutative (parallelogram)

Scalar multiplication

For $k \in \mathbb{R}^{+}, k \boldsymbol{u}$ has the same direction as \boldsymbol{u} but length is multiplied by a factor of k.

When multiplied by $k<0$, direction is reversed and length is multplied by k.

Vector subtraction

To find $\boldsymbol{u}-\boldsymbol{v}$, add $-\boldsymbol{v}$ to \boldsymbol{u}

Parallel vectors

Same or opposite direction

$$
\boldsymbol{u} \| \boldsymbol{v} \Longleftrightarrow \boldsymbol{u}=k \boldsymbol{v} \text { where } k \in \mathbb{R} \backslash\{0\}
$$

Position vectors

Vectors may describe a position relative to O.
For a point A, the position vector is $\overrightarrow{O A}$

Linear combinations of non-parallel vectors

If two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are not parallel, then:

$$
m \boldsymbol{a}+n \boldsymbol{b}=p \boldsymbol{a}+q \boldsymbol{b} \quad \therefore \quad m=p, n=q
$$

Column vector notation

A vector between points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ can be represented as $\left[\begin{array}{l}x_{2}-x_{1} \\ y_{2}-y_{1}\end{array}\right]$

Component notation

A vector $\boldsymbol{u}=\left[\begin{array}{l}x \\ y\end{array}\right]$ can be written as $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}$.
\boldsymbol{u} is the sum of two components $x \boldsymbol{i}$ and $y \boldsymbol{j}$
Magnitude of vector $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}$ is denoted by $|u|=$ $\sqrt{x^{2}+y^{2}}$

Basic algebra applies:
$(x \boldsymbol{i}+y \boldsymbol{j})+(m \boldsymbol{i}+n \boldsymbol{j})=(x+m) \boldsymbol{i}+(y+n) \boldsymbol{j}$
Two vectors equal if and only if their components are equal.

Unit vector $|\hat{\boldsymbol{a}}|=1$

$$
\begin{align*}
\hat{\boldsymbol{a}} & =\frac{1}{|\boldsymbol{a}|} \boldsymbol{a} \tag{1}\\
& =\boldsymbol{a} \cdot|\boldsymbol{a}|
\end{align*}
$$

Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}
$$

on CAS: $\operatorname{dotP}\left(\left[\begin{array}{ll}a & b \\ c\end{array}\right],[d e f]\right)$

Scalar product properties

1. $k(\boldsymbol{a} \cdot \boldsymbol{b})=(k \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot(k b)$
2. $\boldsymbol{a} \cdot \mathbf{0}=0$
3. $a \cdot(b+c)=a \cdot b+a \cdot c$
4. $\boldsymbol{i} \cdot \boldsymbol{i}=\boldsymbol{j} \cdot \boldsymbol{j}=\boldsymbol{k} \cdot \boldsymbol{k}=1$
5. If $\boldsymbol{a} \cdot \boldsymbol{b}=0, \boldsymbol{a}$ and \boldsymbol{b} are perpendicular
6. $\boldsymbol{a} \cdot \boldsymbol{a}=|\boldsymbol{a}|^{2}=a^{2}$

For parallel vectors \boldsymbol{a} and \boldsymbol{b} :

$$
\boldsymbol{a} \cdot \boldsymbol{b}= \begin{cases}|\boldsymbol{a}||\boldsymbol{b}| & \text { if same direction } \\ -|\boldsymbol{a}||\boldsymbol{b}| & \text { if opposite directions }\end{cases}
$$

Geometric scalar products

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a} \||\boldsymbol{b}| \cos \theta
$$

where $0 \leq \theta \leq \pi$

Perpendicular vectors

If $\boldsymbol{a} \cdot \boldsymbol{b}=0$, then $\boldsymbol{a} \perp \boldsymbol{b}($ since $\cos 90=0)$

Finding angle between vectors

positive direction

$$
\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

on CAS: angle([abc], [abct) (Action -> Vector -> Angle)

Angle between vector and axis

Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions.

For $\boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ which makes angles α, β, γ with positive direction of x, y, z axes:

$$
\cos \alpha=\frac{a_{1}}{|\boldsymbol{a}|}, \quad \cos \beta=\frac{a_{2}}{|\boldsymbol{a}|}, \quad \cos \gamma=\frac{a_{3}}{|\boldsymbol{a}|}
$$

on CAS: angle ([lack, $\left.\begin{array}{lll}1 & \mathrm{~b} & 0\end{array}\right]$) for angle between $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ and x-axis

Vector projections

Vector resolute of \boldsymbol{a} in direction of \boldsymbol{b} is magnitude of \boldsymbol{a} in direction of \boldsymbol{b} :

$$
u=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|^{2}} \boldsymbol{b}=\left(\boldsymbol{a} \cdot \frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}}) \hat{\boldsymbol{b}}
$$

Scalar resolute of a on b

$$
r_{s}=|\boldsymbol{u}|=\boldsymbol{a} \cdot \hat{\boldsymbol{b}}
$$

Vector resolute of $\boldsymbol{a} \perp \boldsymbol{b}$

$$
\boldsymbol{w}=\boldsymbol{a}-\boldsymbol{u} \text { where } \boldsymbol{u} \text { is projection } \boldsymbol{a} \text { on } \boldsymbol{b}
$$

Collinear points

≥ 3 points lie on the same line
$\Longrightarrow \overrightarrow{O C}=\lambda \overrightarrow{O A}+\mu \overrightarrow{O B}$ where $\lambda+\mu=1$. If C is between $\overrightarrow{A B}$, then $0<\mu<1$
Points A, B, C are collinear iff $\overrightarrow{A C}=m \overrightarrow{A B}$ where $m \neq 0$

Useful vector properties

- If \boldsymbol{a} and \boldsymbol{b} are parallel, then $\boldsymbol{b}=k \boldsymbol{a}$ for some $k \in$ $\mathbb{R} \backslash\{0\}$
- If \boldsymbol{a} and \boldsymbol{b} are parallel with at least one point in common, then they lie on the same straight line
- Two vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
- $a \cdot a=|a|^{2}$

Linear dependence

Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are nonparallel and:

$$
\begin{gathered}
k \boldsymbol{a}+l \boldsymbol{b}+m \boldsymbol{c}=0 \\
\therefore \boldsymbol{c}=m \boldsymbol{a}+n \boldsymbol{b} \quad(\text { simultaneous })
\end{gathered}
$$

$\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.
Vector \boldsymbol{w} is a linear combination of vectors $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}$

Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.

Parametric vectors

Parametric equation of line through point $\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ is:

$$
\left\{\begin{array}{l}
x=x_{o}+a \cdot t \tag{2}\\
y=y_{0}+b \cdot t \\
z=z_{0}+c \cdot t
\end{array}\right.
$$

Vector proofs

Concurrent lines

≥ 3 lines intersect at a single point

