Statistics

1 Linear combinations of random variables

Continuous random variables

A continuous random variable X has a pdf f such that:

1. $f(x) \geq 0 \forall x$
2. $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\operatorname{Pr}\left(X \leq c=\int_{-\infty}^{c} f(x) d x\right.
$$

Linear functions $X \rightarrow a X+b$

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =\operatorname{Pr}(a X+b \leq y) \\
& =\operatorname{Pr}\left(X \leq \frac{y-b}{a}\right) \\
& =\int_{-\infty}^{\frac{y-b}{a}} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\text { Mean: } & \mathrm{E}(a X+b) & =a \mathrm{E}(X)+b \\
\text { Variance: } & \operatorname{Var}(a X+b) & =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

Linear combination of two random variables

$$
\begin{aligned}
\text { Mean: } & \mathrm{E}(a X+b Y) & =a \mathrm{E}(X)+b \mathrm{E}(Y) & \\
\text { Variance: } & \operatorname{Var}(a X+b Y) & =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y) & \text { (if } X \text { and } Y \text { are independent) }
\end{aligned}
$$

2 Sample mean

$$
\bar{x}=\frac{\Sigma x}{n}
$$

where n is the size of the sample (number of sample points)

On CAS:

1. Spreadsheet
2. In cell A1: mean(randNorm(sd, mean, sample size))
3. Edit \rightarrow Fill \rightarrow Fill Range
4. Input range as A1:An where n is the number of samples
5. Graph \rightarrow Histogram

Sample size of n

$$
\bar{X}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{\sum x}{n}
$$

Sample mean is distributed with mean μ and $\operatorname{sd} \frac{\sigma}{\sqrt{n}}$

