1% Options for packages loaded elsewhere 2\PassOptionsToPackage{unicode}{hyperref} 3\PassOptionsToPackage{hyphens}{url} 4% 5\documentclass[ 6]{article} 7\usepackage{lmodern} 8\usepackage{amssymb,amsmath} 9\usepackage{ifxetex,ifluatex} 10\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex 11 \usepackage[T1]{fontenc} 12 \usepackage[utf8]{inputenc} 13 \usepackage{textcomp} % provide euro and other symbols 14\else % if luatex or xetex 15 \usepackage{unicode-math} 16 \defaultfontfeatures{Scale=MatchLowercase} 17 \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} 18\fi 19% Use upquote if available, for straight quotes in verbatim environments 20\IfFileExists{upquote.sty}{\usepackage{upquote}}{} 21\IfFileExists{microtype.sty}{% use microtype if available 22 \usepackage[]{microtype} 23 \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts 24}{} 25\makeatletter 26\@ifundefined{KOMAClassName}{% if non-KOMA class 27 \IfFileExists{parskip.sty}{% 28 \usepackage{parskip} 29 }{% else 30 \setlength{\parindent}{0pt} 31 \setlength{\parskip}{6pt plus 2pt minus 1pt}} 32}{% if KOMA class 33 \KOMAoptions{parskip=half}} 34\makeatother 35\usepackage{xcolor} 36\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available 37\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} 38\hypersetup{ 39 pdfauthor={Andrew Lorimer}, 40 hidelinks, 41 pdfcreator={LaTeX via pandoc}} 42\urlstyle{same} % disable monospaced font for URLs 43\usepackage[a4paper, margin=2cm]{geometry} 44\setlength{\emergencystretch}{3em} % prevent overfull lines 45\providecommand{\tightlist}{% 46 \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} 47\setcounter{secnumdepth}{-\maxdimen} % remove section numbering 48\usepackage{setspace} 49\usepackage{fancyhdr} 50\pagestyle{fancy} 51\fancyhead[LO,LE]{Year 12 Methods} 52\fancyhead[CO,CE]{Andrew Lorimer} 53\usepackage{graphicx} 54\usepackage{tabularx} 55\usepackage[dvipsnames]{xcolor} 56 57\author{Andrew Lorimer} 58\date{} 59 60\begin{document} 61 62\hypertarget{polynomials}{% 63\section{Polynomials}\label{polynomials}} 64 65\hypertarget{quadratics}{% 66\subsection{Quadratics}\label{quadratics}} 67 68\newcolumntype{R}{>{\raggedleft\arraybackslash}X} 69\begin{tabularx}{\columnwidth}{Rl} 70 General form& \parbox[t]{5cm}{$x^2 + bx + c = (x+m)(x+n)$\\ where $mn=c, \> m+n=b$} \\ 71 \hline 72 Difference of squares & $a^2 - b^2 = (a - b)(a + b)$ \\ 73 \hline 74 Perfect squares & \parbox[c]{5cm}{$a^2 \pm 2ab + b^2 = (a \pm b^2)$} \\ 75 \hline 76 Completing the square & \parbox[t]{5cm}{$x^2+bx+c=(x+{b\over2})^2+c-{b^2\over4}$ \\ $ax^2+bx+c=a(x-{b\over2a})^2+c-{b^2\over4a}$} \\ 77 \hline 78 Quadratic formula & $x={{-b\pm\sqrt{b^2-4ac}}\over2a}$ where $\Delta=b^2-4ac$ \\ 79\end{tabularx} 80 81\hypertarget{cubics}{% 82\subsection{Cubics}\label{cubics}} 83 84\textbf{Difference of cubes:} \(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\)\\ 85\textbf{Sum of cubes:} \(a^3 + b^3 = (a+b)(a^2 - ab + b^2)\)\\ 86\textbf{Perfect cubes:} \(a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3\) 87 88\[y=a(bx-h)^3 + c\] 89 90\begin{itemize} 91\tightlist 92\item 93 \(m=0\) at \emph{stationary point of inflection} 94 (i.e.~(\({h \over b}, k)\)) 95\item 96 in form \(y=(x-a)^2(x-b)\), local max at \(x=a\), local min at \(x=b\) 97\item 98 in form \(y=a(x-b)(x-c)(x-d)\): \(x\)-intercepts at \(b, c, d\) 99\item 100 in form \(y=a(x-b)^2(x-c)\), touches \(x\)-axis at \(b\), intercept at 101 \(c\) 102\end{itemize} 103 104\hypertarget{linear-and-quadratic-graphs}{% 105\subsection{Linear and quadratic 106graphs}\label{linear-and-quadratic-graphs}} 107 108\hypertarget{forms-of-linear-equations}{% 109\subsubsection{Forms of linear 110equations}\label{forms-of-linear-equations}} 111 112\(y=mx+c\) where \(m\) is gradient and \(c\) is \(y\)-intercept\\ 113\({x \over a} + {y \over b}=1\) where \(m\) is gradient and 114\((x_1, y_1)\) lies on the graph\\ 115\(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and 116\(y\)-intercepts 117 118\hypertarget{line-properties}{% 119\subsection{Line properties}\label{line-properties}} 120 121Parallel lines: \(m_1 = m_2\)\\ 122Perpendicular lines: \(m_1 \times m_2 = -1\)\\ 123Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\) 124 125\hypertarget{quartic-graphs}{% 126\subsection{Quartic graphs}\label{quartic-graphs}} 127 128\hypertarget{forms-of-quadratic-equations}{% 129\subsubsection{Forms of quadratic 130equations}\label{forms-of-quadratic-equations}} 131 132\(y=ax^4\)\\ 133\(y=a(x-b)(x-c)(x-d)(x-e)\)\\ 134\(y=ax^4+cd^2 (c \ge 0)\)\\ 135\(y=ax^2(x-b)(x-c)\)\\ 136\(y=a(x-b)^2(x-c)^2\)\\ 137\(y=a(x-b)(x-c)^3\) 138 139\hypertarget{simultaneous-equations-linear}{% 140\subsection{Simultaneous equations 141(linear)}\label{simultaneous-equations-linear}} 142 143\begin{itemize} 144\tightlist 145\item 146 \textbf{Unique solution} - lines intersect at point 147\item 148 \textbf{Infinitely many solutions} - lines are equal 149\item 150 \textbf{No solution} - lines are parallel 151\end{itemize} 152 153\hypertarget{solving-protectbegincasespx-qy-a-rx-sy-bprotectendcases-for-01infty-solutions}{% 154\subsubsection{\texorpdfstring{Solving 155\(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) 156for \(\{0,1,\infty\}\) 157solutions}{Solving \textbackslash protect\textbackslash begin\{cases\}px + qy = a \textbackslash\textbackslash{} rx + sy = b\textbackslash protect\textbackslash end\{cases\} \textbackslash\textgreater{} for \textbackslash\{0,1,\textbackslash infty\textbackslash\} solutions}}\label{solving-protectbegincasespx-qy-a-rx-sy-bprotectendcases-for-01infty-solutions}} 158 159where all coefficients are known except for one, and \(a, b\) are known 160 161\begin{enumerate} 162\def\labelenumi{\arabic{enumi}.} 163\tightlist 164\item 165 Write as matrices: 166 \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\) 167\item 168 Find determinant of first matrix: \(\Delta = ps-qr\) 169\item 170 Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\ 171 or let \(\Delta \ne 0\) for one unique solution. 172\item 173 Solve determinant equation to find variable 174 175 \begin{itemize} 176 \tightlist 177 \item 178 \emph{--- for infinite/no solutions: ---} 179 \end{itemize} 180\item 181 Substitute variable into both original equations 182\item 183 Rearrange equations so that LHS of each is the same 184\item 185 \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) 186 (\(\infty\) solns)\\ 187 \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 188 solns) 189\end{enumerate} 190 191\colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det} 192 193\hypertarget{solving-protectbegincasesa_1-x-b_1-y-c_1-z-d_1-a_2-x-b_2-y-c_2-z-d_2-a_3-x-b_3-y-c_3-z-d_3protectendcases}{% 194\subsubsection{\texorpdfstring{Solving 195\(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}{Solving \textbackslash protect\textbackslash begin\{cases\}a\_1 x + b\_1 y + c\_1 z = d\_1 \textbackslash\textbackslash{} a\_2 x + b\_2 y + c\_2 z = d\_2 \textbackslash\textbackslash{} a\_3 x + b\_3 y + c\_3 z = d\_3\textbackslash protect\textbackslash end\{cases\}}}\label{solving-protectbegincasesa_1-x-b_1-y-c_1-z-d_1-a_2-x-b_2-y-c_2-z-d_2-a_3-x-b_3-y-c_3-z-d_3protectendcases}} 196 197\begin{itemize} 198\tightlist 199\item 200 Use elimination 201\item 202 Generate two new equations with only two variables 203\item 204 Rearrange \& solve 205\item 206 Substitute one variable into another equation to find another variable 207\item 208 etc. 209\end{itemize} 210 211\end{document}