Dynamics

1 Resolution of forces

Resultant force is sum of force vectors

1.1 In angle-magnitude form

Cosine rule: $c^2 = a^2 + b^2 - 2ab\cos\theta$ Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

1.2 In i-j form

Vector of a N at θ to x axis is equal to $a \cos \theta i + a \sin \theta j$. Convert all force vectors then add. To find angle of an ai + bj vector, use $\theta = \tan^{-1} \frac{b}{a}$

1.3 Resolving in a given direction

The resolved part of a force P at angle θ is has magnitude $P\cos\theta$

2 Newton's laws

- 1. Velocity is constant without a net external velocity
- 2. $\frac{d}{dt}\rho \propto \Sigma F \implies \mathbf{F} = m\mathbf{a}$
- 3. Equal and opposite forces

2.1 Weight

A mass of m kg has force of mg acting on it

2.2 Momentum ρ

 $\rho = mv$

2.3 Reaction force R

- With no vertical velocity, R = mg
- With upwards acceleration, R mg = ma
- With force F at angle θ , then $R = mg F \sin \theta$

2.4 Friction

 $F_R = \mu R$ (friction coefficient)

(units kg m/s or Ns) $\,$

3 Inclined planes

 $m{F} = |m{F}| \cos heta m{i} + |m{F}| \sin heta m{j}$

3.1 Connected particles

- Suspended pulley: tension in both sections of rope are equal
- Linear connection: find acceleration of system first
- Pulley on edge of incline: find downwards force W_2 and components of mass on plane