Dynamics

1 Resolution of forces

Resultant force is sum of force vectors

1.1 In angle-magnitude form

Cosine rule: $\quad c^{2}=a^{2}+b^{2}-2 a b \cos \theta \quad$ Sine rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

1.2 In $\boldsymbol{i}-\boldsymbol{j}$ form

Vector of $a \mathrm{~N}$ at θ to x axis is equal to $a \cos \theta \boldsymbol{i}+a \sin \theta \boldsymbol{j}$. Convert all force vectors then add. To find angle of an $a \boldsymbol{i}+b \boldsymbol{j}$ vector, use $\theta=\tan ^{-1} \frac{b}{a}$

1.3 Resolving in a given direction

The resolved part of a force P at angle θ is has magnitude $P \cos \theta$

2 Newton's laws

1. Velocity is constant without a net external velocity
2. $\frac{d}{d t} \rho \propto \Sigma F \Longrightarrow \boldsymbol{F}=m \boldsymbol{a}$
3. Equal and opposite forces

2.1 Weight

A mass of $m \mathrm{~kg}$ has force of $m g$ acting on it

2.2 Momentum ρ

$$
\rho=m v
$$

(units $\mathrm{kg} \mathrm{m} / \mathrm{s}$ or Ns)

2.3 Reaction force R

- With no vertical velocity, $R=m g$
- With upwards acceleration, $R-m g=m a$
- With force F at angle θ, then $R=m g-F \sin \theta$

2.4 Friction

$$
F_{R}=\mu R
$$

3 Inclined planes

$$
\boldsymbol{F}=|\boldsymbol{F}| \cos \theta \boldsymbol{i}+|\boldsymbol{F}| \sin \theta \boldsymbol{j}
$$

3.1 Connected particles

- Suspended pulley: tension in both sections of rope are equal
- Linear connection: find acceleration of system first
- Pulley on edge of incline: find downwards force W_{2} and components of mass on plane

