1 Statistics

Linear combinations of random variables

Continuous random variables

A continuous random variable X has a pdf f such that:

- 1. $f(x) \ge 0 \forall x$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

$$\Pr(X \le c) = \int_{-\infty}^{c} f(x) \, dx$$

Expectation theorems

For some non-linear function g, the expected value E(g(X)) is not equal to g(E(X)).

$$E(X^n) = \Sigma x^n \cdot p(x) \qquad \qquad \text{(non-linear function)}$$

$$\neq [E(X)]^n$$

$$E(aX \pm b) = aE(X) \pm b \qquad \qquad \text{(linear function)}$$

$$E(b) = b \qquad \qquad \text{(for constant } b \in \mathbb{R})$$

$$E(X + Y) = E(X) + E(Y) \qquad \qquad \text{(for two random variables)}$$

Variance theorems

$$Var(aX \pm bY \pm c) = a^2 Var(X) + b^2 Var(Y)$$

Linear functions $X \to aX + b$

$$\begin{aligned} \Pr(Y \leq y) &= \Pr(aX + b \leq y) \\ &= \Pr\left(X \leq \frac{y - b}{a}\right) \\ &= \int_{-\infty}^{\frac{y - b}{a}} f(x) \, dx \end{aligned}$$

Variance: $Var(aX + b) = a^2 Var(X)$

Linear combination of two random variables

Mean: E(aX + bY) = a E(X) + b E(Y)

Variance: $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$ (if X and Y are independent)

Sample mean

Approximation of the **population mean** determined experimentally.

$$\overline{x} = \frac{\sum x}{n}$$

where

n is the size of the sample (number of sample points)

x is the value of a sample point

On CAS

- 1. Spreadsheet
- 2. In cell A1: mean(randNorm(sd, mean, sample size))
- 3. Edit \rightarrow Fill \rightarrow Fill Range
- 4. Input range as A1:An where n is the number of samples
- 5. Graph \rightarrow Histogram

Sample size of n

$$\overline{X} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{\sum x}{n}$$

Sample mean is distributed with mean μ and sd $\frac{\sigma}{\sqrt{n}}$ (approaches these values for increasing sample size n).

For a new distribution with mean of n trials, E(X') = E(X), $sd(X') = \frac{sd(X)}{\sqrt{n}}$

On CAS

- Spreadsheet → Catalog → randNorm(sd, mean, n) where n is the number of samples. Show histogram with Histogram key in top left
- To calculate parameters of a dataset: Calc \rightarrow One-variable

Normal distributions

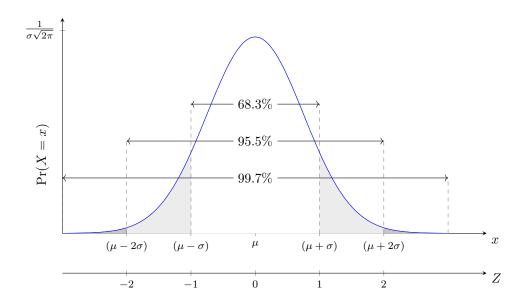
$$Z = \frac{X - \mu}{\sigma}$$

Normal distributions must have area (total prob.) of $1 \implies \int_{-\infty}^{\infty} f(x) dx = 1$

mean = mode = median

Central limit theorem

If X is randomly distributed with mean μ and sd σ , then with an adequate sample size n the distribution of the sample mean \overline{X} is approximately normal with mean $E(\overline{X})$ and $\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.



Confidence intervals

- Point estimate: single-valued estimate of the population mean from the value of the sample mean \overline{x}
- Interval estimate: confidence interval for population mean μ
- C% confidence interval $\implies C\%$ of samples will contain population mean μ

95% confidence interval

For 95% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

where:

 \overline{x} is the sample mean

 σ is the population sd

n is the sample size from which \overline{x} was calculated

Always express z as +ve. Express confidence interval as ordered pair.

On CAS

 $\mathrm{Menu} \to \mathrm{Stats} \to \mathrm{Calc} \to \mathrm{Interval}$

Set $Type = One\text{-}Sample\ Z\ Int$

and select Variable

Margin of error

For 95% confidence interval of μ :

$$M = 1.96 \times \frac{\sigma}{\sqrt{n}}$$

$$\implies n = \left(\frac{1.96\sigma}{M}\right)^2$$

General case

For C% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm k \frac{\sigma}{\sqrt{n}}\right)$$
 where k is such that $\Pr(-k < Z < k) = \frac{C}{100}$

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is 0.95^n chance that all n intervals contain the population mean μ .

2 Hypothesis testing

Note hypotheses are always expressed in terms of population parameters

Null hypothesis H_0

Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.

Alternative hypothesis H_1

Amount of variation from control is significant, despite standard sample variations.

p-value

Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.

Distribution of sample mean

If $X \sim N(\mu, \sigma)$, then distribution of sample mean \overline{X} is also normal with $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

Statistical significance

Significance level is denoted by α .

If $p < \alpha$, null hypothesis is **rejected**

If $p > \alpha$, null hypothesis is **accepted**

z-test

Hypothesis test for a mean of a sample drawn from a normally distributed population with a known standard deviation.

On CAS

 $\mathrm{Menu} \to \mathrm{Statistics} \to \mathrm{Calc} \to \mathrm{Test}.$

Select $One ext{-}Sample \ Z ext{-}Test$ and Variable, then input:

 μ cond: same operator as H_1

 μ_0 : expected sample mean (null hypothesis)

 σ : standard deviation (null hypothesis)

 \overline{x} : sample mean

n: sample size