b37f67c8200e0d80eea913ff55dc54b24b10471e
1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\usepackage{supertabular}
13\usepackage{tabularx}
14\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
15
16
17\begin{document}
18
19\pagenumbering{gobble}
20\begin{multicols}{3}
21
22% +++++++++++++++++++++++
23
24{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
25
26% +++++++++++++++++++++++
27\section{Motion}
28
29 $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
30
31 \subsection*{Inclined planes}
32 $F = m g \sin\theta - F_{\text{frict}} = m a$
33
34% -----------------------
35 \subsection*{Banked tracks}
36
37 \includegraphics[height=4cm]{graphics/banked-track.png}
38
39 $\theta = \tan^{-1} {{v^2} \over rg}$
40
41 $\Sigma F$ always acts towards centre (horizontally)
42
43 $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
44
45 Design speed $v = \sqrt{gr\tan\theta}$
46
47 $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
48
49% -----------------------
50 \subsection*{Work and energy}
51
52 $W=Fs=Fs \cos \theta=\Delta \Sigma E$
53
54 $E_K = {1 \over 2}mv^2$ (kinetic)
55
56 $E_G = mgh$ (potential)
57
58 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
59
60% -----------------------
61 \subsection*{Horizontal circular motion}
62
63 $v = {{2 \pi r} \over T}$
64
65 $f = {1 \over T}, \quad T = {1 \over f}$
66
67 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
68
69 $\Sigma F, a$ towards centre, $v$ tangential
70
71 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
72
73 \includegraphics[height=4cm]{graphics/circ-forces.png}
74
75% -----------------------
76 \subsection*{Vertical circular motion}
77
78 $T =$ tension, e.g. circular pendulum
79
80 $T+mg = {{mv^2}\over r}$ at highest point
81
82 $T-mg = {{mv^2} \over r}$ at lowest point
83
84 $E_K_{\text{bottom}}=E_K_{\text{top}}+mgh$
85
86% -----------------------
87 \subsection*{Projectile motion}
88 \begin{itemize}
89 \item $v_x$ is constant: $v_x = {s \over t}$
90 \item use suvat to find $t$ from $y$-component
91 \item vertical component gravity: $a_y = -g$
92 \end{itemize}
93
94 \begin{align*}
95 v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
96 h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
97 x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
98 y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
99 t={{2u\sin\theta}\over g} \tag{time of flight}\\
100 d={v^2 \over g}\sin \theta \tag{horiz. range} \\
101 \end{align*}
102
103 \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
104
105% -----------------------
106 \subsection*{Pulley-mass system}
107
108 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
109
110 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
111
112% -----------------------
113 \subsection*{Graphs}
114 \begin{itemize}
115 \item{Force-time: $A=\Delta \rho$}
116 \item{Force-disp: $A=W$}
117 \item{Force-ext: $m=k,\quad A=E_{spr}$}
118 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
119 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
120 \end{itemize}
121
122% -----------------------
123 \subsection*{Hooke's law}
124
125 $F=-kx$ (intercepts origin)
126
127 $\text{elastic potential energy} = {1 \over 2}kx^2$
128
129 $x={2mg \over k}$
130
131% -----------------------
132 \subsection*{Motion equations}
133
134 \begin{tabular}{ l r }
135 & no \\
136 $v=u+at$ & $x$ \\
137 $x = {1 \over 2}(v+u)t$ & $a$ \\
138 $x=ut+{1 \over 2}at^2$ & $v$ \\
139 $x=vt-{1 \over 2}at^2$ & $u$ \\
140 $v^2=u^2+2ax$ & $t$ \\
141 \end{tabular}
142
143% -----------------------
144 \subsection*{Momentum}
145
146 $\rho = mv$
147
148 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
149
150 $\Sigma (mv_0)=(\Sigma m)v_1$ (conservation)
151
152 % $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
153
154 % $\Sigma E_K = \Sigma ({1 \over 2} m v^2) = {1 \over 2} (\Sigma m)v_f$
155
156 if elastic:
157 $$\sum _{i{\mathop {=}}1}^{n}E_K (i)=\sum _{i{\mathop {=}}1}^{n}({1 \over 2}m_i v_{i0}^2)={1 \over 2}\sum _{i{\mathop {=}}1}^{n}(m_i) v_f^2$$
158
159 % $n$-body collisions: $\rho$ of each body is independent
160
161% ++++++++++++++++++++++
162\section{Relativity}
163
164 \subsection*{Postulates}
165 1. Laws of physics are constant in all intertial reference frames
166
167 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
168
169 $\therefore \, t$ must dilate as speed changes
170
171 {\bf high-altitude particles:} $t$ dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)
172
173 {\bf Inertial reference frame} $a=0$
174
175 {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
176
177% -----------------------
178 \subsection*{Lorentz factor}
179
180 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
181
182 $t=t_0 \gamma$ ($t$ longer in moving frame)
183
184 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
185
186 $m=m_0 \gamma$ (mass dilation)
187
188 $$v = c\sqrt{1-{1 \over \gamma^2}}$$
189
190% -----------------------
191 \subsection*{Energy and work}
192
193 $E_{\text{rest}} = mc^2, \quad E_K = (\gamma-1)mc^2$
194
195 $E_{\text{total}} = E_K + E_{\text{rest}} = \gamma mc^2$
196
197 $W = \Delta E = \Delta mc^2=(\gamma-1)m_{\text{rest}} c^2$
198
199% -----------------------
200 \subsection*{Relativistic momentum}
201
202 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
203
204 $\rho \rightarrow \infty$ as $v \rightarrow c$
205
206 $v=c$ is impossible (requires $E=\infty$)
207
208 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
209
210% -----------------------
211
212% +++++++++++++++++++++++
213\section{Fields and power}
214
215 \subsection*{Non-contact forces}
216 \begin{itemize}
217 {\item electric (dipoles \& monopoles)}
218 {\item magnetic (dipoles only)}
219 {\item gravitational (monopoles only, $F_g=0$ at mid, attractive only)}
220 \end{itemize}
221
222 \vspace{1em}
223
224 \begin{itemize}
225 \item monopoles: lines towards centre
226 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
227 \item closer field lines means larger force
228 \item dot: out of page, cross: into page
229 \item +ve corresponds to N pole
230 \end{itemize}
231
232 \includegraphics[height=2cm]{graphics/field-lines.png}
233 % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
234
235% -----------------------
236 \subsection*{Gravity}
237
238 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
239 \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
240 \[E_g = mg \Delta h\tag{gpe}\]
241 \[W = \Delta E_g = Fx\tag{work}\]
242 \[w=m(g-a) \tag{app. weight}\]
243
244 % \columnbreak
245
246% -----------------------
247 \subsection*{Satellites}
248
249 \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
250
251 \[T={\sqrt{4 \pi^2 r^3 \over {GM}}}\tag{period}\]
252
253 \[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
254
255% -----------------------
256 \subsection*{Magnetic fields}
257 \begin{itemize}
258 \item field strength $B$ measured in tesla
259 \item magnetic flux $\Phi$ measured in weber
260 \item charge $q$ measured in coulombs
261 \item emf $\mathcal{E}$ measured in volts
262 \end{itemize}
263
264 % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
265
266 \[F=qvB\tag{$F$ on moving $q$}\]
267 \[F=IlB\tag{$F$ of $B$ on $I$}\]
268 \[B={mv \over qr}\tag{field strength on e-}\]
269 \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
270
271 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
272
273% -----------------------
274 \subsection*{Electric fields}
275
276 \[F=qE(=ma) \tag{strength} \]
277 \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
278 \[E=k{q \over r^2} \tag{field on point charge} \]
279 \[E={V \over d} \tag{field between plates}\]
280 \[F=BInl \tag{force on a coil} \]
281 \[\Phi = B_{\perp}A\tag{magnetic flux} \]
282 \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} = Blv\tag{induced emf} \]
283 \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
284
285 \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
286 (emf creates $I$ with associated field that opposes $\Delta \phi$)
287
288 \textbf{Eddy currents:} counter movement within a field
289
290 \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
291
292 \includegraphics[height=2cm]{graphics/slap-2.jpeg}
293 \includegraphics[height=3cm]{graphics/grip.png}
294
295 % \textbf{Right hand slap:} $B \perp I \perp F$ \\
296 % ($I$ = thumb)
297
298 \includegraphics[width=\columnwidth]{graphics/lenz.png}
299
300 \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$
301 If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase
302
303 \textbf{Xfmr} core strengthens \& focuses $\Phi$
304
305% -----------------------
306 \subsection*{Particle acceleration}
307
308 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
309
310 e- accelerated with $x$ V is given $x$ eV
311
312 \[W={1\over2}mv^2=qV \tag{field or points}\]
313 \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
314
315 Circular path: $F\perp B \perp v$
316
317% -----------------------
318 \subsection*{Power transmission}
319
320 % \begin{align*}
321 \[V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \]
322 \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
323 \[V_{\operatorname{loss}}=IR \]
324 % \end{align*}
325
326 Use high-$V$ side for correct $|V_{drop}|$
327
328 \begin{itemize}
329 {\item Parallel $V$ is constant}
330 {\item Series $V$ shared within branch}
331 \end{itemize}
332
333 \includegraphics[height=4cm]{graphics/ac-generator.png}
334
335% -----------------------
336 \subsection*{Motors}
337% \begin{wrapfigure}{r}{-0.1\textwidth}
338
339 \includegraphics[height=4cm]{graphics/dc-motor-2.png}
340 \includegraphics[height=3cm]{graphics/ac-motor.png} \\
341
342 Force on current-carying wire, not copper \\
343 $F=0$ for front & back of coil (parallel) \\
344 Any angle $> 0$ will produce force \\
345% \end{wrapfigure}
346 \textbf{DC:} split ring (two halves)
347
348% \begin{wrapfigure}{r}{0.3\textwidth}
349
350% \end{wrapfigure}
351 \textbf{AC:} slip ring (separate rings with constant contact)
352
353% \pagebreak
354
355% +++++++++++++++++++++++
356\section{Waves}
357
358 \textbf{nodes:} fixed on graph \\
359 \textbf{amplitude:} max disp. from $y=0$ \\
360 \textbf{rarefactions} and \textbf{compressions} \\
361 \textbf{mechanical:} transfer of energy without net transfer of matter \\
362
363
364 \textbf{Longitudinal (motion $||$ wave)}
365 \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
366
367 \textbf{Transverse (motion $\perp$ wave)}
368 \includegraphics[width=6cm]{graphics/transverse-waves.png}
369
370 % -----------------------
371 $T={1 \over f}\quad$(period: time for one cycle)
372 $v=f \lambda \quad$(speed: displacement / sec)
373 $f={c \over \lambda}\quad\hspace{0.7em}$(for $v=c$)
374
375 % -----------------------
376 \subsection*{Doppler effect}
377
378 When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
379
380 % -----------------------
381 \subsection*{Interference}
382
383 \includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\
384 Poissons's spot supports wave theory (circular diffraction)
385
386 \textbf{Standing waves} - constructive int. at resonant freq. Rebound from ends.
387
388 \textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser
389
390 \textbf{Incoherent} - e.g. incandescent/LED
391
392
393
394
395
396 % -----------------------
397 \subsection*{Harmonics}
398
399 1st harmonic = fundamental
400
401 \textbf{for nodes at both ends:} \\
402 \(\hspace{2em} \lambda = {{2l} \div n}\)
403 \(\hspace{2em} f = {nv \div 2l} \)
404
405 \textbf{for node at one end ($n$ is odd):} \\
406 \(\hspace{2em} \lambda = {{4l} \div n}\)
407 \(\hspace{2em} f = {nv \div 4l} \) \\
408 alternatively, $\lambda = {4l \over {2n-1}}$ where $n\in \mathbb{Z}$ and $n+1$ is the next possible harmonic
409
410
411 % \(a=2\) for nodes at both ends, \\ \(a=4\) for node at one end
412
413 % -----------------------
414 \subsection*{Polarisation}
415 \includegraphics[height=3.5cm]{graphics/polarisation.png} \\
416 Reduces total amplitude (transverse only)
417
418 % -----------------------
419 \subsection*{Diffraction}
420 \includegraphics[width=6cm]{graphics/diffraction.jpg}
421 \includegraphics[width=6cm]{graphics/diffraction-2.png}
422 \begin{itemize}
423 % \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
424 \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
425 \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
426 \item Path difference: \(\Delta x = {{\lambda l }\over d}\) where \\
427 % \(\Delta x\) = fringe spacing \\
428 \(l\) = distance from source to observer\\
429 \(d\) = separation between each wave source (e.g. slit) \(=S_1-S_2\)
430 \item diffraction $\propto {\lambda \over d}$
431 \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
432 \item diffraction creates distortion (electron $>$ optical microscopes)
433 \end{itemize}
434
435
436 % -----------------------
437 \subsection*{Refraction}
438 \includegraphics[height=3.5cm]{graphics/refraction.png}
439
440 When a medium changes character, light is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
441
442 angle of incidence $\theta_i =$ angle of reflection $\theta_r$
443
444 Critical angle $\theta_c = \sin^{-1}{n_2 \over n_1}$
445
446 Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
447
448 ${v_1 \div v_2} = {\sin\theta_1 \div \sin\theta_2}$
449
450 $n_1 v_1 = n_2 v_2$
451
452 $n={c \over v}$
453
454
455% +++++++++++++++++++++++
456\section{Light and Matter}
457
458 % -----------------------
459 \subsection*{Planck's equation}
460
461 \[ \quad E=hf={hc \over \lambda}=\rho c = qV\]
462 \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
463 \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
464
465 \subsection*{De Broglie's theory}
466
467 \[ \lambda = {h \over \rho} = {h \over mv} = {h \over {m \sqrt{2W \over m}}}\]
468 \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
469 \[ v = \sqrt{2E_K \div m} \]
470
471 \begin{itemize}
472 \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
473 \item confirmed by e- and x-ray patterns
474 \end{itemize}
475
476 \subsection*{Force of electrons}
477 \[ F={2P_{\text{in}}\over c} \]
478 % \begin{align*}
479 \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
480 \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
481 % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
482 % \end{align*}
483
484 \subsection*{X-ray electron interaction}
485
486 \begin{itemize}
487 \item e- stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$ and $r$ is radius of orbit
488 \item $\therefore 2\pi r = n{h \over mv} = n \lambda$ (circumference)
489 \item if $2\pi r \ne n{h \over mv}$, no standing wave
490 \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
491 % \item calculating $h$: $\lambda = {h \over \rho}$
492 \end{itemize}
493
494 \subsection*{Photoelectric effect}
495
496 \begin{itemize}
497 \item $V_{\operatorname{supply}}$ does not affect photocurrent
498 \item $V_{\operatorname{sup}} > 0$: attracted to +ve
499 \item $V_{\operatorname{sup}} < 0$: attracted to -ve, $I\rightarrow 0$
500 \item $v$ of e- depends on shell
501 \item max $I$ (not $V$) depends on intensity
502 \end{itemize}
503
504 \subsubsection*{Threshold frequency $f_0$}
505
506 min $f$ for photoelectron release. if $f < f_0$, no photoelectrons.
507
508 \subsubsection*{Work function $\phi=hf_0$}
509
510 min $E$ for photoelectron release. determined by strength of bonding. Units: eV or J.
511
512 \subsubsection*{Kinetic energy E_K=hf - \phi = qV_0}
513
514
515 $V_0 = E_K$ in eV \\
516 % $E_K = x$-int of $V\cdot I$ graph (in eV) \\
517 dashed line below $E_K=0$
518
519
520 \subsubsection*{Stopping potential $V_0$ for min $I$}
521
522 $$V_0=h_{\text{eV}}(f-f_0)$$
523 Opposes induced photocurrent
524
525 \subsubsection*{Graph features}
526
527 \newcolumntype{b}{>{\hsize=.75\hsize}X}
528\newcolumntype{s}{>{\hsize=.3\hsize}X}
529
530 \begin{tabularx}{\columnwidth}{bbbb}
531\hline
532&$m$&$x$-int&$y$-int \\
533\hline
534\hline
535$f \cdot E_K$ & $h$ & $f_0$ & $-\phi$ \\
536$V \cdot I$ & & $V_0$ & intensity\\
537$f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
538\hline
539\end{tabularx}
540
541
542
543 \subsection*{Spectral analysis}
544
545 \begin{itemize}
546 \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
547 \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
548 \item Ionisation energy - min $E$ required to remove e-
549 \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
550 \item No. of lines - include all possible states
551 \end{itemize}
552
553 \subsection*{Uncertainty principle}
554
555 measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
556
557 \subsection*{Wave-particle duality}
558
559 \subsubsection*{wave model}
560 \begin{itemize}
561 \item cannot explain photoelectric effect
562 \item $f$ is irrelevant to photocurrent
563 \item predicts delay between incidence and ejection
564 \item speed depends on medium
565 \item supported by bright spot in centre
566 \item $\lambda = {hc \over E}$
567 \end{itemize}
568
569 \subsubsection*{particle model}
570
571 \begin{itemize}
572 \item explains photoelectric effect
573 \item rate of photoelectron release $\propto$ intensity
574 \item no time delay - one photon releases one electron
575 \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
576 \item light exerts force
577 \item light bent by gravity
578 \item quantised energy
579 \item $\lambda = {h \over \rho}$
580 \end{itemize}
581
582 % +++++++++++++++++++++++
583 \section{Experimental \\ design}
584
585 \textbf{Absolute uncertainty} $\Delta$ \\
586 (same units as quantity)
587 \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
588 \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
589 \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
590 \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
591
592 \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
593 \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
594 \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
595 \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
596 \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
597 \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
598
599 Uncertainty of a measurement is $1 \over 2$ the smallest division
600
601 \textbf{Precision} - concordance of values \\
602 \textbf{Accuracy} - closeness to actual value\\
603 \textbf{Random errors} - unpredictable, reduced by more tests \\
604 \textbf{Systematic errors} - not reduced by more tests \\
605 \textbf{Uncertainty} - margin of potential error \\
606 \textbf{Error} - actual difference \\
607 \textbf{Hypothesis} - can be tested experimentally \\
608 \textbf{Model} - evidence-based but indirect representation
609
610\end{multicols}
611
612\end{document}