Dynamics

Resolution of forces 1

Resultant force is sum of force vectors

In angle-magnitude form

Cosine rule:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$
 Sine rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

In i-j form

Vector of a N at θ to x axis is equal to $a\cos\theta i + a\sin\theta j$. Convert all force vectors then add. To find angle of an ai + bj vector, use $\theta = \tan^{-1} \frac{b}{a}$

Resolving in a given direction

The resolved part of a force P at angle θ is has magnitude $P\cos\theta$

To convert force $||\vec{OA}|$ to angle-magnitude form, find component $\perp \vec{OA}$ then $|r| = \sqrt{\left(||\vec{OA}|^2 + \left(\perp \vec{OA}\right)^2}, \quad \theta = 0$ $\tan^{-1} \frac{\perp \vec{OA}}{||\vec{OA}|}$

2 Newton's laws

- 1. Velocity is constant without a net external velocity
- 2. $\frac{d}{dt}\rho \propto \Sigma F \implies \mathbf{F} = m\mathbf{a}$
- 3. Equal and opposite forces

Weight

A mass of m kg has force of mg acting on it

Momentum ρ

 $\rho = mv$

(units kg m/s or Ns)

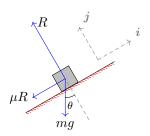
Reaction force R

- With no vertical velocity, R = mg
- With upwards acceleration, R mg = ma
- With force F at angle θ , then $R = mg F \sin \theta$

Friction

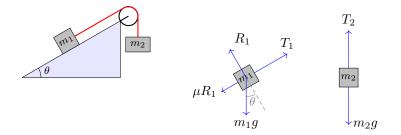
 $F_R = \mu R$

1


(friction coefficient)

3 Inclined planes

$$F = |F| \cos \theta i + |F| \sin \theta j$$


Andrew Lorimer

- ullet Normal force R is at right angles to plane
- ullet Let direction up the plane be i and perpendicular to plane j

4 Connected particles

- Suspended pulley: tension in both sections of rope are equal
- Linear connection: find acceleration of system first
- Pulley on edge of incline: find downwards force W_2 and components of mass on plane

5 Equilibrium

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$
 (Lami's theorem)

Three methods:

- 1. Lami's theorem (sine rule)
- 2. Triangle of forces or CAS (use to verify)
- 3. Resolution of forces ($\Sigma F = 0$ simultaneous)

On CAS: use Geometry, lock known constants.