Vectors

- vector: a directed line segment
- arrow indicates direction
- length indicates magnitude
- notated as \vec{a}, A
- column notation:
- vectors with equal magnitude and direction are equivalent

|y|

Vector addition

u + v can be represented by drawing each vector head to tail then joining the lines. Addition is commutative (parallelogram)

Scalar multiplication

For $k \in \mathbb{R}^+$, ku has the same direction as u but length is multiplied by a factor of k.

When multiplied by k < 0, direction is reversed and length is multiplied by k.

Vector subtraction

To find $\boldsymbol{u} - \boldsymbol{v}$, add $-\boldsymbol{v}$ to \boldsymbol{u}

Parallel vectors

Parallel vectors have same direction or opposite direction.

Two non-zero vectors u and v are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at u = kv

Position vectors

Vectors may describe a position relative to O.

For a point A, the position vector is OA

Linear combinations of non-parallel vectors

If two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are not parallel, then:

 $m\mathbf{a} + n\mathbf{b} = p\mathbf{a} + q\mathbf{b}$ implies m = p, n = q

Column vector notation

A vector between points $A(x_1, y_1)$, $B(x_2, y_2)$ can be represented as $\begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$

Component notation

A vector $\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$. \boldsymbol{u} is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$ Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|\boldsymbol{u}| = \sqrt{x^2 + y^2}$ Basic algebra applies:

 $(x\mathbf{i} + y\mathbf{j}) + (m\mathbf{i} + n\mathbf{j}) = (x + m)\mathbf{i} + (y + n)\mathbf{j}$ Two vectors equal if and only if their components are equal.

Unit vectors

A vector of length 1. i and j are unit vectors.

A unit vector in direction of \boldsymbol{a} is denoted by $\hat{\boldsymbol{a}}$:

$$\hat{a} = \frac{1}{|a|}a \quad (\implies |\hat{a}| = 1)$$

Also, unit vector of \boldsymbol{a} can be defined by $\boldsymbol{a} \cdot |\boldsymbol{a}|$

Scalar products / dot products

If
$$\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$$
 and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is:

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$

Produces a real number, not a vector.

 $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$

Geometric scalar products

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$

where $0 \le \theta \le \pi$

Perpendicular vectors

If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$)

Finding angle between vectors

$$\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}||\boldsymbol{b}|}$$

Vector projections

Vector resolute of a in direction of b is magnitude of a in direction of b.

$$oldsymbol{u} = rac{oldsymbol{a}\cdotoldsymbol{b}}{|oldsymbol{b}|^2}oldsymbol{b} = igg(oldsymbol{a}\cdotoldsymbol{b})igg(oldsymbol{b}|oldsymbol{b}) = (oldsymbol{a}\cdotoldsymbol{b})igb(oldsymbol{b})igg)$$

Vector proofs

Concurrent lines - ≥ 3 lines intersect at a single point Collinear points - ≥ 3 points lie on the same line

Useful vector properties:

- If \boldsymbol{a} and \boldsymbol{b} are parallel, then $\boldsymbol{b} = k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$
- If *a* and *b* are parallel with at least one point in common, then they lie on the same straight line
- Two vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b} = 0$
- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$