b688c265ff6f472d591cf0ad514674a7c6af8754
   1\definecolor{shade1}{HTML}{ffffff}
   2\definecolor{shade2}{HTML}{e6f2ff}
   3\definecolor{shade3}{HTML}{cce2ff}
   4\section{Transformations}
   5
   6\textbf{Order of operations:} DRT
   7
   8\begin{center}dilations --- reflections --- translations\end{center}
   9
  10\subsection*{Transforming \(x^n\) to \(a(x-h)^n+K\)}
  11
  12\begin{itemize}
  13\tightlist
  14\item
  15  dilation factor of \(|a|\) units parallel to \(y\)-axis or from
  16  \(x\)-axis
  17\item
  18  if \(a<0\), graph is reflected over \(x\)-axis
  19\item
  20  translation of \(k\) units parallel to \(y\)-axis or from \(x\)-axis
  21\item
  22  translation of \(h\) units parallel to \(x\)-axis or from \(y\)-axis
  23\item
  24  for \((ax)^n\), dilation factor is \(1 \over a\) parallel to
  25  \(x\)-axis or from \(y\)-axis
  26\item
  27  when \(0 < |a| < 1\), graph becomes closer to axis
  28\end{itemize}
  29
  30\subsection*{Transforming \(f(x)\) to \(y=Af[n(x+c)]+b\)}
  31
  32Applies to exponential, log, trig, \(e^x\), polynomials.\\
  33Functions must be written in form \(y=Af[n(x+c)]+b\)
  34
  35\begin{itemize}
  36\tightlist
  37\item
  38  dilation by factor \(|A|\) from \(x\)-axis (if \(A<0\), reflection
  39  across \(y\)-axis)
  40\item
  41  dilation by factor \(1 \over n\) from \(y\)-axis (if \(n<0\),
  42  reflection across \(x\)-axis)
  43\item
  44  translation of \(c\) units from \(y\)-axis (\(x\)-shift)
  45\item
  46  translation of \(b\) units from \(x\)-axis (\(y\)-shift)
  47\end{itemize}
  48
  49\subsection*{Dilations}
  50
  51Two pairs of equivalent processes for \(y=f(x)\):
  52
  53\begin{enumerate}
  54\def\labelenumi{\arabic{enumi}.}
  55\item
  56  \begin{itemize}
  57  \tightlist
  58  \item
  59    Dilating from \(x\)-axis: \((x, y) \rightarrow (x, by)\)
  60  \item
  61    Replacing \(y\) with \(y \over b\) to obtain \(y = b f(x)\)
  62  \end{itemize}
  63\item
  64  \begin{itemize}
  65  \tightlist
  66  \item
  67    Dilating from \(y\)-axis: \((x, y) \rightarrow (ax, y)\)
  68  \item
  69    Replacing \(x\) with \(x \over a\) to obtain \(y = f({x \over a})\)
  70  \end{itemize}
  71\end{enumerate}
  72
  73For graph of \(y={1 \over x}\), horizontal \& vertical dilations are
  74equivalent (symmetrical). If \(y={a \over x}\), graph is contracted
  75rather than dilated.
  76
  77\subsection*{Matrix transformations}
  78
  79Find new point \((x^\prime, y^\prime)\). Substitute these into original
  80equation to find image with original variables \((x, y)\).
  81
  82\subsection*{Reflections}
  83
  84\begin{itemize}
  85\tightlist
  86\item
  87  Reflection \textbf{in} axis = reflection \textbf{over} axis =
  88  reflection \textbf{across} axis
  89\item
  90  Translations do not change
  91\end{itemize}
  92
  93\subsection*{Translations}
  94
  95For \(y = f(x)\), these processes are equivalent:
  96
  97\begin{itemize}
  98\tightlist
  99\item
 100  applying the translation \((x, y) \rightarrow (x + h, y + k)\) to the
 101  graph of \(y = f(x)\)
 102\item
 103  replacing \(x\) with \(x-h\) and \(y\) with \(y-k\) to obtain
 104  \(y-k = f(x-h)\)
 105\end{itemize}
 106
 107\subsection*{Power functions}
 108
 109\textbf{Strictly increasing:} \(f(x_2) > f(x_1)\) where \(x_2 > x_1\)
 110(including \(x=0\))
 111
 112\subsubsection*{Odd and even functions}
 113
 114Even when \(f(x) = -f(x)\)\\
 115Odd when \(-f(x) = f(-x)\)
 116
 117Function is even if it can be reflected across \(y\)-axis
 118\(\implies f(x)=f(-x)\)\\
 119Function \(x^{\pm {p \over q}}\) is odd if \(q\) is odd
 120                  
 121
 122\subsubsection*{\(x^{-1 \over n}\) where \(n \in \mathbb{Z}^+\)}
 123
 124Mostly only on CAS.
 125
 126We can write
 127\(x^{-1 \over n} = {1 \over {x^{1 \over n}}} = {1 \over ^n \sqrt{x}}\)n.\\
 128Domain is:
 129\(\begin{cases} \mathbb{R} \setminus \{0\}\hspace{0.5em} \text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}\)
 130
 131If \(n\) is odd, it is an odd function.
 132
 133\subsubsection*{\(x^{p \over q}\) where \(p, q \in \mathbb{Z}^+\)}
 134
 135\[x^{p \over q} = \sqrt[q]{x^p}\]
 136
 137\begin{itemize}
 138\tightlist
 139\item
 140  if \(p > q\), the shape of \(x^p\) is dominant
 141\item
 142  if \(p < q\), the shape of \(x^{1 \over q}\) is dominant
 143\item
 144  points \((0, 0)\) and \((1, 1)\) will always lie on graph
 145\item
 146  Domain is:
 147  \(\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}\)
 148\end{itemize}
 149
 150\subsection*{Piecewise functions}
 151
 152\[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
 153
 154\textbf{Open circle:} point included\\
 155\textbf{Closed circle:} point not included
 156
 157\subsection*{Operations on functions}
 158
 159For \(f \pm g\) and \(f \times g\):
 160\quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
 161
 162Addition of linear piecewise graphs: add \(y\)-values at key points
 163
 164Product functions:
 165
 166\begin{itemize}
 167\tightlist
 168\item
 169  product will equal 0 if \(f=0\) or \(g=0\)
 170\item
 171  \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
 172\end{itemize}
 173
 174\subsection*{Composite functions}
 175
 176\((f \circ g)(x)\) is defined iff
 177\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)