c219f628b64e0c0690bebcb475d037e6a6a54ce4
1\documentclass[a4paper, tikz, pstricks]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{array}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{tcolorbox}
7\usepackage{fancyhdr}
8\usepackage{pgfplots}
9\usepackage{tikz}
10\usetikzlibrary{arrows,
11 calc,
12 decorations,
13 scopes,
14}
15\usepackage{pst-plot}
16\psset{dimen=monkey,fillstyle=solid,opacity=.5}
17\def\object{%
18 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
19 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
20 \rput{*0}{%
21 \psline{->}(0,-2)%
22 \uput[-90]{*0}(0,-2){$\vec{w}$}}
23}
24
25\usepackage{tabularx}
26\usetikzlibrary{angles}
27\usepackage{keystroke}
28\usepackage{listings}
29\usepackage{xcolor} % used only to show the phantomed stuff
30\definecolor{cas}{HTML}{e6f0fe}
31
32\pagestyle{fancy}
33\fancyhead[LO,LE]{Year 12 Specialist - Dynamics}
34\fancyhead[CO,CE]{Andrew Lorimer}
35
36\setlength\parindent{0pt}
37
38\begin{document}
39
40 \title{Dynamics}
41 \author{}
42 \date{}
43 \maketitle
44
45 \section{Resolution of forces}
46
47 \textbf{Resultant force} is sum of force vectors
48
49 \subsection{In angle-magnitude form}
50
51 \makebox[3cm]{Cosine rule:} \(c^2=a^2+b^2-2ab\cos\theta\)
52 \makebox[3cm]{Sine rule:} \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
53
54 \subsection{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form}
55
56 Vector of \(a\) N at \(\theta\) to \(x\) axis is equal to \(a \cos \theta \boldsymbol{i} + a \sin \theta \boldsymbol{j}\). Convert all force vectors then add.
57
58 To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = \tan^{-1} \frac{b}{a}\)
59
60 \subsection{Resolving in a given direction}
61
62 The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\)
63
64 To convert force \(||\vec{OA}\) to angle-magnitude form, find component \(\perp\vec{OA}\) then \(|\boldsymbol{r}|=\sqrt{\left(||\vec{OA}\right)^2 + \left(\perp\vec{OA}\right)^2},\quad \theta = \tan^{-1}\dfrac{\perp\vec{OA}}{||\vec{OA}}\)
65
66 \section{Newton's laws}
67
68 \begin{enumerate}
69 \item Velocity is constant without a net external velocity
70 \item \(\frac{d}{dt} \rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\)
71 \item Equal and opposite forces
72 \end{enumerate}
73
74 \subsection{Weight}
75 A mass of \(m\) kg has force of \(mg\) acting on it
76
77 \subsection{Momentum \(\rho\)}
78 \[ \rho = mv \tag{units kg m/s or Ns} \]
79
80 \subsection{Reaction force \(R\)}
81
82 \begin{itemize}
83 \item With no vertical velocity, \(R=mg\)
84 \item With upwards acceleration, \(R-mg=ma\)
85 \item With force \(F\) at angle \(\theta\), then \(R=mg-F\sin\theta\)
86 \end{itemize}
87
88 \subsection{Friction}
89
90 \[ F_R = \mu R \tag{friction coefficient} \]
91
92 \section{Inclined planes}
93
94 \[ \boldsymbol{F} = |\boldsymbol{F}| \cos \theta \boldsymbol{i} + |\boldsymbol{F}| \sin \theta \boldsymbol{j} \]
95 \def\iangle{30} % Angle of the inclined plane
96
97 \def\down{-90}
98 \def\arcr{0.5cm} % Radius of the arc used to indicate angles
99
100\begin{tikzpicture}[
101 >=latex',
102 scale=1,
103 force/.style={->,draw=blue,fill=blue},
104 axis/.style={densely dashed,gray,font=\small},
105 M/.style={rectangle,draw,fill=lightgray,minimum size=0.5cm,thin},
106 m/.style={rectangle,draw=black,fill=lightgray,minimum size=0.3cm,thin},
107 plane/.style={draw=black,fill=blue!10},
108 string/.style={draw=red, thick},
109 pulley/.style={thick},
110 ]
111 \pgfmathsetmacro{\Fnorme}{2}
112 \pgfmathsetmacro{\Fangle}{30}
113 \begin{scope}[rotate=\iangle]
114 \node[M,transform shape] (M) {};
115 \coordinate (xmin) at ($(M.south west)-({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
116 \coordinate (xmax) at ($(M.south east)+({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
117 \coordinate (ymax) at ($(M.north)+(0, {abs(1.1*\Fnorme*cos(-\Fangle))})$);
118 \coordinate (ymin) at ($(M.south)-(0, 1cm)$);
119 \coordinate (axiscentre) at ($(M.south)+(0.5cm, 0.5cm)$);
120 \draw[postaction={decorate, decoration={border, segment length=2pt, angle=-45},draw,red}] (xmin) -- (xmax);
121 \coordinate (N) at ($(M.center)+(0,{\Fnorme*cos(-\Fangle)})$);
122 \coordinate (fr) at ($(M.center)+({\Fnorme*sin(-\Fangle)}, 0)$);
123 % Draw axes and help lines
124
125 {[axis,->]
126 \draw (ymin) -- (ymax) node[right] {\(\boldsymbol{j}\)};
127 \draw (M) --(M-|xmax) node[right] {\(\boldsymbol{i}\)}; % mental note for me: change "right" to "above"
128 }
129
130 % Forces
131 {[force,->]
132 % Assuming that Mg = 1. The normal force will therefore be cos(alpha)
133 \draw (M.center) -- (N) node [right] {\(R\)};
134 \draw (M.center) -- (fr) node [left] {\(\mu R\)};
135 }
136% \draw [densely dotted, gray] (fr) |- (N) node [pos=.25, left] {\tiny$\lVert \vec F\rVert\cos\theta$} node [pos=.75, above] {\tiny$\lVert \vec F\rVert\sin\theta$};
137 \end{scope}
138 % Draw gravity force. The code is put outside the rotated
139 % scope for simplicity. No need to do any angle calculations.
140 \draw[force,->] (M.center) -- ++(0,-1) node[below] {$mg$};
141 \draw (M.center)+(-90:\arcr) arc [start angle=-90,end angle=\iangle-90,radius=\arcr] node [below, pos=.5] {\tiny\(\theta\)};
142 \end{tikzpicture}
143
144 \section{Connected particles}
145
146 \begin{itemize}
147 \item \textbf{Suspended pulley:} tension in both sections of rope are equal
148 \item \textbf{Linear connection:} find acceleration of system first
149 \item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane
150 \end{itemize}
151\def\iangle{25} % Angle of the inclined plane
152
153\def\down{-90}
154\def\arcr{0.5cm} % Radius of the arc used to indicate angles
155
156{\begin{centering} {\begin{tikzpicture}[
157 force/.style={>=latex,draw=blue,fill=blue},
158 axis/.style={densely dashed,gray,font=\small},
159 M/.style={rectangle,draw,fill=lightgray,minimum size=0.6cm,thin},
160 m/.style={rectangle,draw=black,fill=lightgray,minimum size=0.3cm,thin},
161 plane/.style={draw=black,fill=blue!10},
162 string/.style={draw=red, thick},
163 pulley/.style={thick},
164 scale=1.5
165]
166
167\matrix[column sep=1cm] {
168 %% Sketch
169 \draw[plane] (0,-1) coordinate (base)
170 -- coordinate[pos=0.5] (mid) ++(\iangle:3) coordinate (top)
171 |- (base) -- cycle;
172 \path (mid) node[M,rotate=\iangle,yshift=0.3cm,font=\footnotesize] (M) {\(m_1\)};
173 \draw[pulley] (top) -- ++(\iangle:0.25) circle (0.25cm)
174 ++ (90-\iangle:0.5) coordinate (pulley);
175 \draw[string] (M.east) -- ++(\iangle:1.4cm) arc (90+\iangle:0:0.25)
176 -- ++(0,-1) node[m,font=\scriptsize] {\(m_2\)};
177
178 \draw[->] (base)++(\arcr,0) arc (0:\iangle:\arcr);
179 \path (base)++(\iangle*0.5:\arcr+5pt) node {\(\theta\)};
180 %%
181
182&
183 %% Free body diagram of m1
184 \begin{scope}[rotate=\iangle]
185 \node[M,transform shape] (M) {};
186 % Draw axes and help lines
187
188 {[axis,->]
189 \draw (0,-1) -- (0,2) node[right] {\(+\boldsymbol{i}\)};
190 \draw (M) -- ++(2,0) node[right] {\(+\boldsymbol{j}\)};
191 % Indicate angle. The code is a bit awkward.
192
193 \draw[solid,shorten >=0.5pt] (\down-\iangle:\arcr)
194 arc(\down-\iangle:\down:\arcr);
195 \node at (\down-0.5*\iangle:1.3*\arcr) {\(\theta\)};
196 }
197
198 % Forces
199 {[force,->]
200 % Assuming that Mg = 1. The normal force will therefore be cos(alpha)
201 \draw (M.center) -- ++(0,{cos(\iangle)}) node[above right] {$N$};
202 \draw (M.west) -- ++(-1,0) node[left] {\(F_R\)};
203 \draw (M.east) -- ++(1,0) node[above] {\(T_1\)};
204 }
205
206 \end{scope}
207 % Draw gravity force. The code is put outside the rotated
208 % scope for simplicity. No need to do any angle calculations.
209 \draw[force,->] (M.center) -- ++(0,-1) node[below] {\(m_1g\)};
210 %%
211
212&
213 %%%
214 % Free body diagram of m2
215 \node[m] (m) {};
216 \draw[axis,->] (m) -- ++(0,-2) node[left] {$+$};
217 {[force,->]
218 \draw (m.north) -- ++(0,1) node[above] {\(T_2\)};
219 \draw (m.south) -- ++(0,-1) node[right] {\(m_2g\)};
220 }
221
222\\
223};
224\end{tikzpicture}}\end{centering} }
225 \section{Equilibrium}
226
227 \[ \dfrac{A}{\sin a} = \dfrac{B}{\sin b} = \dfrac{C}{\sin c} \tag{Lami's theorem}\]
228
229 Three methods:
230 \begin{enumerate}
231 \item Lami's theorem (sine rule)
232 \item Triangle of forces or CAS (use to verify)
233 \item Resolution of forces (\(\Sigma F = 0\) - simultaneous)
234 \end{enumerate}
235
236
237 \colorbox{cas}{On CAS:} use Geometry, lock known constants.
238
239
240\end{document}