Physics Andrew Lorimer

1 Motion

Unit conversion

$\mathrm{m} / \mathrm{s} \times 3.6=\mathrm{km} / \mathrm{h}$

Inclined planes

$F=m g \sin \theta-F_{\text {frict }}=m a$

Banked tracks

$\theta=\tan ^{-1} \frac{v^{2}}{r g}$ (also for objects on string)
ΣF always acts towards centre, but not necessarily horizontally
$\Sigma F=\frac{m v^{2}}{r}=m g \tan \theta$
Design speed $v=\sqrt{g r \tan \theta}$

Work and energy

$W=F x=\Delta \Sigma E$ (work)
$E_{K}=\frac{1}{2} m v^{2}$ (kinetic)
$E_{G}=m g h$ (potential)
$\Sigma E=\frac{1}{2} m v^{2}+m g h($ energy transfer)

Pulley-mass system

$a=\frac{m_{2} g}{m_{1}+m_{2}}$ where m_{2} is suspended

Graphs

- Force-time: $A=\Delta \rho$
- Force-disp: $A=W$
- Force-ext: $m=k, \quad A=E_{s p r}$
- Force-dist: $A=\Delta$ gpe
- Field-dist: $A=\Delta$ gpe $/ \mathrm{kg}$

Hooke's law

$F=-k x$
$E_{\text {elastic }}=\frac{1}{2} k x^{2}$

Motion equations

$$
\begin{array}{ll}
v=u+a t & x \\
x=\frac{1}{2}(v+u) t & a \\
x=u t+\frac{1}{2} a t^{2} & v \\
x=v t-\frac{1}{2} a t^{2} & u \\
v^{2}=u^{2}+2 a x & t
\end{array}
$$

Momentum

$\rho=m v$
impulse $=\Delta \rho, \quad F \Delta t=m \Delta v$
Momentum is conserved.
$\Sigma E_{K \text { before }}=\Sigma E_{K \text { after }}$ if elastic

2 Relativity

Postulates

1. Laws of physics are constant in all intertial reference frames
2. Speed of light c is the same to all observers (Michelson-Morley)
\therefore, t must dilate as speed changes
Inertial reference frame - $a=0$
Proper time $t_{0} \mid$ length l_{0} - measured by observer in same frame as events

Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$t=t_{0} \gamma(t$ longer in moving frame)
$l=\frac{l_{0}}{\gamma}$ (l contracts $\| v$: shorter in moving frame)
$m=m_{0} \gamma$ (mass dilation)

$$
v=c \sqrt{1-\frac{1}{\gamma^{2}}}
$$

Energy and work

$E_{0}=m c^{2}$ (rest)
$E_{\text {total }}=E_{K}+E_{\text {rest }}=\gamma m c^{2}$
$E_{K}=(\gamma-1) m c^{2}$
$W=\Delta E=\Delta m c^{2}$

Relativistic momentum

$$
\rho=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\gamma m v=\gamma \rho_{0}
$$

$\rho \rightarrow \infty$ as $v \rightarrow c$
$v=c$ is impossible (requires $E=\infty$)

$$
v=\frac{\rho}{m \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}}
$$

Fusion and fission

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

e- accelerated with $x \mathrm{~V}$ is given $x \mathrm{eV}$

High-altitude muons

- t dilation - more muons reach Earth than expected
- normal half-life is 2.2μ s in stationary frame
- at $v \approx c$, muons observed from Earth have halflife $>2.2 \mu \mathrm{~s}$
- slower time - more time to travel, so muons reach surface

3 Fields and power

Non-contact forces

- electric fields (dipoles \& monopoles)
- magnetic fields (dipoles only)
- gravitational fields (monopoles only)
- monopoles: field lines radiate towards central object
- dipoles - field lines $+\rightarrow$ - or $\mathrm{N} \rightarrow \mathrm{S}$ (opposite in solenoid)
- closer field lines means larger force
- dot means out of page, cross means into page

Gravity

$$
\begin{gathered}
F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { (grav. force) } \\
g=\frac{F_{g}}{m}=G \frac{M_{\text {planet }}}{r^{2}} \quad \text { (grav. acc.) }
\end{gathered}
$$

$$
\begin{array}{r}
E_{g}=m g \Delta h \\
W=\Delta E_{g}=F x \tag{work}
\end{array}
$$

Satellites

$$
v=\sqrt{\frac{G M}{r}}=\sqrt{g r}=\frac{2 \pi r}{T}
$$

$$
T=\frac{\sqrt{4 \pi^{2} r^{2}}}{G M}
$$

(period)

$$
\begin{equation*}
\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}} \tag{P}
\end{equation*}
$$

Electric fields

$$
\begin{array}{rr}
F=q E & (E=\text { strength }) \\
W=q_{\text {point }} \Delta V & \text { (in field or points) } \\
F=k \frac{q_{1} q_{2}}{r^{2}} & \text { (force between } \left.q_{1,2}\right) \\
E=k \frac{Q}{r^{2}} & (r=\|E Q\|) \\
F=B I n l & \text { (force on a coil) } \\
\Phi=B_{\perp} A & \text { (magnetic flux) } \\
\mathcal{E}=-N \frac{\Delta \Phi}{\Delta t} & \text { (induced emf) } \\
\frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}=\frac{I_{s}}{I_{p}} & \text { (xfmr coil ratios) }
\end{array}
$$

Lenz's law: " $-n$ " in Faraday - emf opposes $\Delta \Phi$
Eddy currents: counter movement within a field

Power transmission

$$
V_{\mathrm{rms}}={\frac{V_{\mathrm{p} \rightarrow \mathrm{p}}}{\sqrt{2}_{\text {loss }}}=\Delta V I=I^{2} R=\frac{\Delta V^{2}}{R}}_{(\mathrm{P})}
$$

- Parallel - voltage is constant
- Series - voltage is shared within branch

Right hand grip: thumb points to north or I
Right hand slap: field, current, force are \perp
Flux-time graphs: gradient $\times n=$ emf

Transformers: core strengthens \& focuses Φ

Motors

DC: split ring (one ring split into two halves)
AC: slip ring (separate rings with constant contact)

