d61f60efb00ef267bb8b5a38d696579b3e88bafe
1\documentclass[a4paper]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{multicol}
4\usepackage{multirow}
5\usepackage{amsmath}
6\usepackage{amssymb}
7\usepackage{harpoon}
8\usepackage{tabularx}
9\usepackage[dvipsnames, table]{xcolor}
10\usepackage{graphicx}
11\usepackage{wrapfig}
12\usepackage{tikz}
13\usetikzlibrary{calc}
14\usepgflibrary{arrows.meta}
15\usepackage{fancyhdr}
16\pagestyle{fancy}
17\fancyhead[LO,LE]{Year 12 Specialist}
18\fancyhead[CO,CE]{Andrew Lorimer}
19
20\usepackage{mathtools}
21\usepackage{xcolor} % used only to show the phantomed stuff
22\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
23\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
24\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
25\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
26\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
27\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
28\definecolor{cas}{HTML}{e6f0fe}
29\linespread{1.5}
30
31\begin{document}
32
33\begin{multicols}{2}
34
35 \section{Complex numbers}
36
37 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
38
39 \begin{align*}
40 \text{Cartesian form: } & a+bi\\
41 \text{Polar form: } & r\operatorname{cis}\theta
42 \end{align*}
43
44 \subsection*{Operations}
45
46 \begin{tabularx}{\columnwidth}{R{0.33}|X|X}
47 & \textbf{Cartesian} & \textbf{Polar} \\
48 \hline
49 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
50 \hline
51 \(+k \times z\) & \multirow{2}{\hsize}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
52 \cline{1-1}\cline{3-3}
53 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
54 \hline
55 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
56 \hline
57 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
58 \end{tabularx}
59
60 \subsubsection*{Scalar multiplication in polar form}
61
62 For \(k \in \mathbb{R}^+\):
63 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
64
65 \noindent For \(k \in \mathbb{R}^-\):
66 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & 0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & -\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
67
68 \subsection*{Conjugate}
69
70 \begin{align*}
71 \overline{z} &= a \mp bi\\
72 &= r \operatorname{cis}(-\theta)
73 \end{align*}
74
75 \noindent \colorbox{cas}{On CAS:} \verb|conjg(a+bi)|
76
77 \subsubsection*{Properties}
78
79 \begin{align*}
80 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
81 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
82 \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
83 z\overline{z} &= (a+bi)(a-bi)\\
84 &= a^2 + b^2\\
85 &= |z|^2
86 \end{align*}
87
88 \subsection*{Modulus}
89
90 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
91
92 \subsubsection*{Properties}
93
94 \begin{align*}
95 |z_1z_2|&=|z_1||z_2|\\
96 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
97 |z_1+z_2|&\le|z_1|+|z_2|
98 \end{align*}
99
100 \subsection*{Multiplicative inverse}
101
102 \begin{align*}
103 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
104 &=\frac{\overline{z}}{|z|^2}a\\
105 &=r \operatorname{cis}(-\theta)
106 \end{align*}
107
108 \subsection*{Dividing over \(\mathbb{C}\)}
109
110 \begin{align*}
111 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
112 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
113 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
114 & \qquad \text{(rationalise denominator)}
115 \end{align*}
116
117 \subsection*{Polar form}
118
119 \begin{align*}
120 z&=r\operatorname{cis}\theta\\
121 &=r(\cos \theta + i \sin \theta)
122 \end{align*}
123
124 \begin{itemize}
125 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
126 \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS:} \verb|arg(a+bi)|}
127 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
128 \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
129 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
130 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
131 \end{itemize}
132
133 \subsection*{de Moivres' theorem}
134
135 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
136
137 \subsection*{Complex polynomials}
138
139 Include \(\pm\) for all solutions, incl. imaginary
140
141 \begin{tabularx}{\columnwidth}{ R{0.55} X }
142 \hline
143 Sum of squares & \(\begin{aligned}
144 z^2 + a^2 &= z^2-(ai)^2\\
145 &= (z+ai)(z-ai) \end{aligned}\) \\
146 \hline
147 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
148 \hline
149 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
150 \hline
151 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
152 \hline
153 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
154 \hline
155 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)
156 \end{tabularx}
157
158 \subsection*{Roots}
159
160 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
161
162 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
163
164 \begin{itemize}
165
166 \item{Same modulus for all solutions}
167 \item{Arguments are separated by \(\frac{2\pi}{n}\)}
168 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
169 \end{itemize}
170
171 \noindent For \(0=az^2+bz+c\), use quadratic formula:
172
173 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
174
175 \subsection*{Fundamental theorem of algebra}
176
177 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
178
179 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
180 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
181
182 \subsection*{Argand planes}
183
184 \begin{center}\begin{tikzpicture}[scale=2]
185 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
186 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
187 \coordinate (P) at (1,1);
188 \coordinate (a) at (1,0);
189 \coordinate (b) at (0,1);
190 \coordinate (O) at (0,0);
191 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
192 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
193 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
194 \begin{scope}
195 \path[clip] (O) -- (P) -- (a);
196 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
197 \node at ($(O)+(20:3mm)$) {$\theta$};
198 \end{scope}
199 \filldraw (P) circle (0.5pt);
200 \end{tikzpicture}\end{center}
201
202 \begin{itemize}
203 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
204 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
205 \end{itemize}
206
207 \subsection*{Sketching complex graphs}
208
209 \subsubsection*{Linear}
210
211 \begin{itemize}
212 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
213 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
214 \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)}
215 \end{itemize}
216
217 \subsubsection*{Circles}
218
219 \begin{itemize}
220 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
221 \item \(|z-(a+bi)|=c\)
222 \end{itemize}
223
224 \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
225
226 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
227 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
228 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
229 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
230 \draw [->, thick, blue] (0,0) -- (1,1);
231 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
232 \begin{scope}
233 \path[clip] (0,0) -- (1,1) -- (1,0);
234 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
235 \node at ($(0,0)+(20:3mm)$) {$\theta$};
236 \end{scope}
237 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)<\theta\)};
238 \node [blue, mydot] {};
239 \end{tikzpicture}\end{center}
240
241 \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
242
243 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
244 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
245 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
246 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
247 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
248 \begin{scope}
249 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
250 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
251 \end{scope}
252 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
253 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
254 \node [brown, mydot] at (-0.25,0) {};
255 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
256 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
257 \node [below, font=\footnotesize] at (1,0) {\(1\)};
258 \end{tikzpicture}\end{center}
259
260 \section{Vectors}
261
262
263\begin{itemize}
264\item
265 \textbf{vector:} a directed line segment\\
266\item
267 arrow indicates direction
268\item
269 length indicates magnitude
270\item
271 notated as \(\vec{a}, \widetilde{A}, \overrightharp{a}\)
272\item
273 column notation: \(\begin{bmatrix} x \\ y \end{bmatrix}\)
274\item
275 vectors with equal magnitude and direction are equivalent
276\end{itemize}
277
278%\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/vectors-intro.png}
279
280\subsection{Vector addition}
281
282\(\boldsymbol{u} + \boldsymbol{v}\) can be represented by drawing each
283 vector head to tail then joining the lines.\\
284Addition is commutative (parallelogram)
285
286\subsection{Scalar multiplication}
287
288For \(k \in \mathbb{R}^+\), \(k\boldsymbol{u}\) has the same direction
289as \(\boldsymbol{u}\) but length is multiplied by a factor of \(k\).
290
291When multiplied by \(k < 0\), direction is reversed and length is
292multplied by \(k\).
293
294\subsection{Vector subtraction}
295
296To find \(\boldsymbol{u} - \boldsymbol{v}\), add \(\boldsymbol{-v}\) to
297\(\boldsymbol{u}\)
298
299\subsection{Parallel vectors}
300
301Same or opposite direction
302
303\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
304
305\subsection{Position vectors}
306
307Vectors may describe a position relative to \(O\).
308
309For a point \(A\), the position vector is \(\overrightharp{OA}\)
310
311\subsection{Linear combinations of non-parallel
312vectors}
313
314If two non-zero vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
315not parallel, then:
316
317\[m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q\]
318
319%\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
320%\includegraphics[width=1]{graphics/vector-subtraction.jpg}
321
322\subsection{Column vector notation}
323
324A vector between points \(A(x_1,y_1), \> B(x_2,y_2)\) can be represented
325as \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\)
326
327\subsection{Component notation}
328
329A vector \(\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}\) can be
330written as \(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\).\\
331\(\boldsymbol{u}\) is the sum of two components \(x\boldsymbol{i}\) and
332\(y\boldsymbol{j}\)\\
333Magnitude of vector
334\(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\) is denoted by
335\(|u|=\sqrt{x^2+y^2}\)
336
337Basic algebra applies:\\
338\((x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}\)\\
339Two vectors equal if and only if their components are equal.
340
341\subsection{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
342\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation}
343
344 \subsection*{Scalar/dot product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
345
346\[\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2\]
347
348\textbf{on CAS:} \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}
349
350\subsection{Scalar product properties}
351
352\begin{enumerate}
353\item
354 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
355\item
356 \(\boldsymbol{a \cdot 0}=0\)
357\item
358 \(\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}\)
359\item
360 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
361\item
362 If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), \(\boldsymbol{a}\) and
363 \(\boldsymbol{b}\) are perpendicular
364\item
365 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
366\end{enumerate}
367
368For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
369\[\boldsymbol{a \cdot b}=\begin{cases}
370|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
371-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
372\end{cases}\]
373
374\subsection{Geometric scalar products}
375
376\[\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta\]
377
378where \(0 \le \theta \le \pi\)
379
380\subsection{Perpendicular vectors}
381
382If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), then
383\(\boldsymbol{a} \perp \boldsymbol{b}\) (since \(\cos 90 = 0\))
384
385\subsection{Finding angle between
386vectors}
387
388\textbf{positive direction}
389
390\[\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}\]
391
392\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}a\ b\ c{]})} (Action
393-\textgreater{} Vector -\textgreater{} Angle)
394
395\subsection{Angle between vector and
396axis}
397
398Direction of a vector can be given by the angles it makes with
399\(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\) directions.
400
401For
402\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
403which makes angles \(\alpha, \beta, \gamma\) with positive direction of
404\(x, y, z\) axes:
405\[\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}\]
406
407\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})} for angle
408between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
409\(x\)-axis
410
411\subsection{Vector projections}
412
413Vector resolute of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\)
414is magnitude of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\):
415
416\[\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}\]
417
418\subsection{Scalar resolute of \(\boldsymbol{a}\) on \(\boldsymbol{b}\)}
419
420\[r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\]
421
422\subsection{Vector resolute of \(\boldsymbol{a} \perp \boldsymbol{b}\)}
423
424\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}\]
425
426\subsection{Vector proofs}
427
428\subsubsection{Concurrent lines}
429
430\(\ge\) 3 lines intersect at a single point
431
432\subsubsection{Collinear points}
433
434\(\ge\) 3 points lie on the same line\\
435\(\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}\) where
436\(\lambda + \mu = 1\). If \(C\) is between \(\vec{AB}\), then
437\(0 < \mu < 1\)\\
438Points \(A, B, C\) are collinear iff
439\(\vec{AC}=m\vec{AB} \text{ where } m \ne 0\)
440
441\subsubsection{Useful vector properties}
442
443\begin{itemize}
444\item
445 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel, then
446 \(\boldsymbol{b}=k\boldsymbol{a}\) for some
447 \(k \in \mathbb{R} \setminus \{0\}\)
448\item
449 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
450 least one point in common, then they lie on the same straight line
451\item
452 Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
453 perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\)
454\item
455 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
456\end{itemize}
457
458\subsection{Linear dependence}
459
460Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly
461dependent if they are non-parallel and:
462
463\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\]
464\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\]
465
466\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
467independent if no vector in the set is expressible as a linear
468combination of other vectors in set, or if they are parallel.
469
470Vector \(\boldsymbol{w}\) is a linear combination of vectors
471\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\)
472
473\subsection{Three-dimensional vectors}
474
475Right-hand rule for axes: \(z\) is up or out of page.
476
477%\includegraphics{graphics/vectors-3d.png}
478
479\subsection{Parametric vectors}
480
481Parametric equation of line through point \((x_0, y_0, z_0)\) and
482parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
483
484\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
485
486
487 \end{multicols}
488\end{document}