e084adbe3b00bfbf96abe5203c14a0d184bcbb29
1\documentclass[a4paper]{article}
2\usepackage[dvipsnames, table]{xcolor}
3\usepackage{adjustbox}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{array}
7\usepackage{blindtext}
8\usepackage{dblfloatfix}
9\usepackage{enumitem}
10\usepackage{fancyhdr}
11\usepackage[a4paper,margin=1.8cm]{geometry}
12\usepackage{graphicx}
13\usepackage{harpoon}
14\usepackage{hhline}
15\usepackage{import}
16\usepackage{keystroke}
17\usepackage{listings}
18\usepackage{makecell}
19\usepackage{mathtools}
20\usepackage{mathtools}
21\usepackage{multicol}
22\usepackage{multirow}
23\usepackage{pgfplots}
24\usepackage{pst-plot}
25\usepackage{rotating}
26\usepackage{subfiles}
27\usepackage{tabularx}
28\usepackage{tcolorbox}
29\usepackage{tikz-3dplot}
30\usepackage{tikz}
31\usepackage{tkz-fct}
32\usepackage[obeyspaces]{url}
33\usepackage{wrapfig}
34
35
36\usetikzlibrary{%
37 angles,
38 arrows,
39 arrows.meta,
40 calc,
41 datavisualization.formats.functions,
42 decorations,
43 decorations.markings,
44 decorations.text,
45 decorations.pathreplacing,
46 decorations.text,
47 scopes
48}
49
50\newcommand\given[1][]{\:#1\vert\:}
51\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
52
53\usepgflibrary{arrows.meta}
54\pgfplotsset{compat=1.16}
55\pgfplotsset{every axis/.append style={
56 axis x line=middle,
57 axis y line=middle,
58 axis line style={->},
59 xlabel={$x$},
60 ylabel={$y$},
61}}
62
63\psset{dimen=monkey,fillstyle=solid,opacity=.5}
64\def\object{%
65 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
66 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
67 \rput{*0}{%
68 \psline{->}(0,-2)%
69 \uput[-90]{*0}(0,-2){$\vec{w}$}}
70}
71
72\pagestyle{fancy}
73\fancyhead[LO,LE]{Year 12 Specialist}
74\fancyhead[CO,CE]{Andrew Lorimer}
75
76\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
77\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
78\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
79\linespread{1.5}
80\setlength{\parindent}{0pt}
81\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
82
83\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
84\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
85\newcolumntype{Y}{>{\centering\arraybackslash}X}
86
87\definecolor{cas}{HTML}{e6f0fe}
88\definecolor{important}{HTML}{fc9871}
89\definecolor{dark-gray}{gray}{0.2}
90\definecolor{light-gray}{HTML}{cccccc}
91\definecolor{peach}{HTML}{e6beb2}
92\definecolor{lblue}{HTML}{e5e9f0}
93
94\newcommand{\tg}{\mathop{\mathrm{tg}}}
95\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
96\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
97\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
98
99\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
100\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
101
102\begin{document}
103
104\begin{multicols}{2}
105
106 \section{Complex numbers}
107
108 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
109
110 \begin{align*}
111 \text{Cartesian form: } & a+bi\\
112 \text{Polar form: } & r\operatorname{cis}\theta
113 \end{align*}
114
115 \subsection*{Operations}
116
117 \definecolor{shade1}{HTML}{ffffff}
118 \definecolor{shade2}{HTML}{e6f2ff}
119 \definecolor{shade3}{HTML}{cce2ff}
120 \begin{tabularx}{\columnwidth}{r|X|X}
121 & \textbf{Cartesian} & \textbf{Polar} \\
122 \hline
123 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
124 \hline
125 \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
126 \cline{1-1}\cline{3-3}
127 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
128 \hline
129 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
130 \hline
131 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
132 \end{tabularx}
133
134 \subsubsection*{Scalar multiplication in polar form}
135
136 For \(k \in \mathbb{R}^+\):
137 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
138
139 \noindent For \(k \in \mathbb{R}^-\):
140 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
141
142 \subsection*{Conjugate}
143
144 \begin{align*}
145 \overline{z} &= a \mp bi\\
146 &= r \operatorname{cis}(-\theta)
147 \end{align*}
148
149 \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
150
151 \subsubsection*{Properties}
152
153 \begin{align*}
154 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
155 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
156 \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
157 z\overline{z} &= (a+bi)(a-bi)\\
158 &= a^2 + b^2\\
159 &= |z|^2
160 \end{align*}
161
162 \subsection*{Modulus}
163
164 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
165
166 \subsubsection*{Properties}
167
168 \begin{align*}
169 |z_1z_2|&=|z_1||z_2|\\
170 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
171 |z_1+z_2|&\le|z_1|+|z_2|
172 \end{align*}
173
174 \subsection*{Multiplicative inverse}
175
176 \begin{align*}
177 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
178 &=\frac{\overline{z}}{|z|^2}a\\
179 &=r \operatorname{cis}(-\theta)
180 \end{align*}
181
182 \subsection*{Dividing over \(\mathbb{C}\)}
183
184 \begin{align*}
185 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
186 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
187 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
188 & \qquad \text{(rationalise denominator)}
189 \end{align*}
190
191 \subsection*{Polar form}
192
193 \begin{align*}
194 z&=r\operatorname{cis}\theta\\
195 &=r(\cos \theta + i \sin \theta)
196 \end{align*}
197
198 \begin{itemize}
199 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
200 \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
201 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
202 \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
203 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
204 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
205 \end{itemize}
206
207 \subsection*{de Moivres' theorem}
208
209 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
210
211 \subsection*{Complex polynomials}
212
213 Include \(\pm\) for all solutions, incl. imaginary
214
215 \begin{tabularx}{\columnwidth}{ R{0.55} X }
216 \hline
217 Sum of squares & \(\begin{aligned}
218 z^2 + a^2 &= z^2-(ai)^2\\
219 &= (z+ai)(z-ai) \end{aligned}\) \\
220 \hline
221 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
222 \hline
223 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
224 \hline
225 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
226 \hline
227 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
228 \hline
229 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
230 \hline
231 \end{tabularx}
232
233 \subsection*{\(n\)th roots}
234
235 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
236
237 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
238
239 \begin{itemize}
240
241 \item{Same modulus for all solutions}
242 \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
243 \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
244 \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
245 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
246 \end{itemize}
247
248 \noindent For \(0=az^2+bz+c\), use quadratic formula:
249
250 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
251
252 \subsection*{Fundamental theorem of algebra}
253
254 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
255
256 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
257 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
258
259 \subsection*{Argand planes}
260
261 \begin{center}\begin{tikzpicture}[scale=2]
262 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
263 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
264 \coordinate (P) at (1,1);
265 \coordinate (a) at (1,0);
266 \coordinate (b) at (0,1);
267 \coordinate (O) at (0,0);
268 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
269 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
270 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
271 \begin{scope}
272 \path[clip] (O) -- (P) -- (a);
273 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
274 \node at ($(O)+(20:3mm)$) {$\theta$};
275 \end{scope}
276 \filldraw (P) circle (0.5pt);
277 \end{tikzpicture}\end{center}
278
279 \begin{itemize}
280 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
281 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
282 \end{itemize}
283
284 \subsection*{Sketching complex graphs}
285
286 \subsubsection*{Linear}
287
288 \begin{itemize}
289 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
290 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
291 \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
292 \end{itemize}
293
294 \subsubsection*{Circles}
295
296 \begin{itemize}
297 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
298 \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
299 \end{itemize}
300
301 \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
302
303 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
304 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
305 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
306 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
307 \draw [->, thick, blue] (0,0) -- (1,1);
308 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
309 \begin{scope}
310 \path[clip] (0,0) -- (1,1) -- (1,0);
311 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
312 \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
313 \end{scope}
314 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
315 \node [blue, mydot] {};
316 \end{tikzpicture}\end{center}
317
318 \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
319
320 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
321 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
322 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
323 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
324 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
325 \begin{scope}
326 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
327 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
328 \end{scope}
329 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
330 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
331 \node [brown, mydot] at (-0.25,0) {};
332 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
333 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
334 \node [below, font=\footnotesize] at (1,0) {\(1\)};
335 \end{tikzpicture}\end{center}
336
337 \section{Vectors}
338 \begin{center}\begin{tikzpicture}
339 \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)};
340 \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
341 \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
342 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
343 \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
344 \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
345 \end{scope}
346 \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
347 \end{tikzpicture}\end{center}
348 \subsection*{Column notation}
349
350 \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
351 \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
352
353 \subsection*{Scalar multiplication}
354
355 \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
356
357 \noindent For \(k \in \mathbb{R}^-\), direction is reversed
358
359 \subsection*{Vector addition}
360 \begin{center}\begin{tikzpicture}[scale=1]
361 \coordinate (A) at (0,0);
362 \coordinate (B) at (2,2);
363 \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
364 \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
365 \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
366 \end{tikzpicture}\end{center}
367
368 \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
369
370 \begin{itemize}
371 \item Draw each vector head to tail then join lines
372 \item Addition is commutative (parallelogram)
373 \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
374 \end{itemize}
375
376 \subsection*{Magnitude}
377
378 \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
379
380 \subsection*{Parallel vectors}
381
382 \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
383
384 For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
385 \[\boldsymbol{a \cdot b}=\begin{cases}
386 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
387 -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
388 \end{cases}\]
389 %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
390 %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
391
392 \subsection*{Perpendicular vectors}
393
394 \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
395
396 \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
397 \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
398
399 \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
400
401
402 \begin{center}\begin{tikzpicture}[scale=2]
403 \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
404 \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
405 \begin{scope}
406 \path[clip] (1,0.5) -- (1,0) -- (0,0);
407 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
408 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
409 \end{scope}
410 \end{tikzpicture}\end{center}
411 \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
412 \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
413
414 \subsubsection*{Properties}
415
416 \begin{enumerate}
417 \item
418 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
419 \item
420 \(\boldsymbol{a \cdot 0}=0\)
421 \item
422 \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
423 \item
424 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
425 \item
426 \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
427 \item
428 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
429 \end{enumerate}
430
431 \subsection*{Angle between vectors}
432
433 \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
434
435 \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
436
437 (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
438
439 \subsection*{Angle between vector and axis}
440
441 \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
442 which makes angles \(\alpha, \beta, \gamma\) with positive side of
443 \(x, y, z\) axes:
444 \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
445
446 \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
447 between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
448 \(x\)-axis
449
450 \subsection*{Projections \& resolutes}
451
452 \begin{tikzpicture}[scale=3]
453 \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
454 \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
455 \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
456 \begin{scope}
457 \path[clip] (1,0.5) -- (1,0) -- (0,0);
458 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
459 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
460 \end{scope}
461 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
462 \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
463 \end{scope}
464 \draw (0,0) coordinate (O)
465 (1,0) coordinate (A)
466 (1,0.5) coordinate (B)
467 pic [draw,red,angle radius=2mm] {right angle = O--A--B};
468 \end{tikzpicture}
469
470 \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
471
472 \begin{align*}
473 \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
474 & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
475 & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
476 \end{align*}
477
478 \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
479 \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
480
481 \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
482 \begin{align*}
483 s &= |\boldsymbol{u}|\\
484 &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
485 &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
486 &= |\boldsymbol{a}| \cos \theta
487 \end{align*}
488
489 \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
490
491 \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
492
493
494 \subsection*{Vector proofs}
495
496 \textbf{Concurrent:} intersection of \(\ge\) 3 lines
497
498 \begin{tikzpicture}
499 \draw [blue] (0,0) -- (1,1);
500 \draw [red] (1,0) -- (0,1);
501 \draw [brown] (0.4,0) -- (0.6,1);
502 \filldraw (0.5,0.5) circle (2pt);
503 \end{tikzpicture}
504
505 \subsubsection*{Collinear points}
506
507 \(\ge\) 3 points lie on the same line
508
509 \begin{tikzpicture}
510 \draw [purple] (0,0) -- (4,1);
511 \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
512 \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
513 \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
514 \coordinate (O) at (2.8,-0.2);
515 \node at (O) [below] {\(O\)};
516 \begin{scope}[->, orange, thick]
517 \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
518 \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
519 \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
520 \end{scope}
521 \end{tikzpicture}
522
523 \begin{align*}
524 \text{e.g. Prove that}\\
525 \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
526 \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
527 &= \overrightharp{OA} + m\overrightharp{AB}\\
528 &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
529 &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
530 &=(1-m)\boldsymbol{a}+m{b}
531 \end{align*}
532 \begin{align*}
533 \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
534 \text{where } \lambda + \mu &= 1\\
535 \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
536 \end{align*}
537
538
539 \subsubsection*{Parallelograms}
540
541 \begin{center}\begin{tikzpicture}
542 \coordinate (O) at (0,0) node [below left] {\(O\)};
543 \coordinate (A) at (4,0);
544 \coordinate (B) at (6,2);
545 \coordinate (C) at (2,2);
546 \coordinate (D) at (6,0);
547
548 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
549 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
550 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
551 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
552
553 \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
554 \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
555 \begin{scope}
556 \path[clip] (C) -- (A) -- (O);
557 \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
558 \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
559 \end{scope}
560 \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
561 \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
562 \end{tikzpicture}\end{center}
563
564 \begin{itemize}
565 \item
566 Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
567 \item
568 If diagonals are equal length, it is a rectangle
569 \item
570 \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
571 \item
572 Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
573 \end{itemize}
574
575 \subsubsection*{Useful vector properties}
576
577 \begin{itemize}
578 \item
579 \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
580 \(k \in \mathbb{R} \setminus \{0\}\)
581 \item
582 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
583 least one point in common, then they lie on the same straight line
584 \item
585 \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
586 \item
587 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
588 \end{itemize}
589
590 \subsection*{Linear dependence}
591
592 \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
593 \begin{align*}
594 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
595 \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
596 \end{align*}
597
598 \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
599 independent if no vector in the set is expressible as a linear
600 combination of other vectors in set, or if they are parallel.
601
602 \subsection*{Three-dimensional vectors}
603
604 Right-hand rule for axes: \(z\) is up or out of page.
605
606 \tdplotsetmaincoords{60}{120}
607 \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick},
608 vector/.style={-stealth,red,very thick},
609 vector guide/.style={dashed,gray,thick}]
610
611 %standard tikz coordinate definition using x, y, z coords
612 \coordinate (O) at (0,0,0);
613
614 %tikz-3dplot coordinate definition using x, y, z coords
615
616 \pgfmathsetmacro{\ax}{1}
617 \pgfmathsetmacro{\ay}{1}
618 \pgfmathsetmacro{\az}{1}
619
620 \coordinate (P) at (\ax,\ay,\az);
621
622 %draw axes
623 \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
624 \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
625 \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
626
627 %draw a vector from O to P
628 \draw[vector] (O) -- (P);
629
630 %draw guide lines to components
631 \draw[vector guide] (O) -- (\ax,\ay,0);
632 \draw[vector guide] (\ax,\ay,0) -- (P);
633 \draw[vector guide] (P) -- (0,0,\az);
634 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
635 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
636 \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
637 \node[tdplot_main_coords,above right]
638 at (\ax,\ay,\az){(\ax, \ay, \az)};
639 \end{tikzpicture}\end{center}
640
641 \subsection*{Parametric vectors}
642
643 Parametric equation of line through point \((x_0, y_0, z_0)\) and
644 parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
645
646 \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
647
648 \section{Circular functions}
649
650 \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
651
652 \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
653 \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
654
655 \subsection*{Reciprocal functions}
656
657 \subsubsection*{Cosecant}
658
659 \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
660
661 \begin{itemize}
662 \item
663 \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
664 \item
665 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
666 \item
667 \textbf{Turning points} at
668 \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
669 \item
670 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
671 \end{itemize}
672
673 \subsubsection*{Secant}
674
675\begin{tikzpicture}
676 \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
677% \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
678 \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
679 \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
680 \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
681 \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
682 \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
683 \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
684\end{axis}
685 \node [black] at (7,3.5) {\(\cos x\)};
686\end{tikzpicture}
687
688 \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
689
690 \begin{itemize}
691
692 \item
693 \textbf{Domain}
694 \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
695 \item
696 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
697 \item
698 \textbf{Turning points} at
699 \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
700 \item
701 \textbf{Asymptotes} at
702 \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
703 \end{itemize}
704
705 \subsubsection*{Cotangent}
706
707\begin{tikzpicture}
708 \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
709 \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
710\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
711\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
712\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
713\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
714 \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
715 \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
716 \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
717 \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
718 \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
719\end{axis}
720\end{tikzpicture}
721
722 \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
723
724 \begin{itemize}
725
726 \item
727 \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
728 \item
729 \textbf{Range} \(= \mathbb{R}\)
730 \item
731 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
732 \end{itemize}
733
734 \subsubsection*{Symmetry properties}
735
736 \[\begin{split}
737 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
738 \operatorname{sec} (-x) & = \operatorname{sec} x \\
739 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
740 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
741 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
742 \operatorname{cot} (-x) & = - \operatorname{cot} x
743 \end{split}\]
744
745 \subsubsection*{Complementary properties}
746
747 \[\begin{split}
748 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
749 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
750 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
751 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
752 \end{split}\]
753
754 \subsubsection*{Pythagorean identities}
755
756 \[\begin{split}
757 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
758 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
759 \end{split}\]
760
761 \subsection*{Compound angle formulas}
762
763 \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
764 \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
765 \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
766
767 \subsection*{Double angle formulas}
768
769 \[\begin{split}
770 \cos 2x &= \cos^2 x - \sin^2 x \\
771 & = 1 - 2\sin^2 x \\
772 & = 2 \cos^2 x -1
773 \end{split}\]
774
775 \[\sin 2x = 2 \sin x \cos x\]
776
777 \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
778
779 \subsection*{Inverse circular functions}
780
781 \begin{tikzpicture}
782 \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
783 \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
784 \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
785 \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
786 \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
787 \addplot[mark=*, blue] coordinates {(1,0)};
788 \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
789 \end{axis}
790 \end{tikzpicture}\\
791
792 Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
793
794 \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
795 \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
796
797 \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
798 \hfill where \(\cos y = x, \> y \in [0, \pi]\)
799
800 \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
801 \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
802
803 \begin{tikzpicture}
804 \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
805 \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
806 \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
807 \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
808 \end{axis}
809 \end{tikzpicture}
810\columnbreak
811 \section{Differential calculus}
812
813 \subsection*{Limits}
814
815 \[\lim_{x \rightarrow a}f(x)\]
816 \(L^-,\quad L^+\) \qquad limit from below/above\\
817 \(\lim_{x \to a} f(x)\) \quad limit of a point\\
818
819 \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
820 e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
821
822 \subsubsection*{Limit theorems}
823
824 \begin{enumerate}
825 \item
826 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
827 \item
828 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
829 \item
830 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
831 \item
832 \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
833 \item
834 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
835 \item
836 \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
837 \end{enumerate}
838
839 \subsection*{Gradients of secants and tangents}
840
841 \textbf{Secant (chord)} - line joining two points on curve\\
842 \textbf{Tangent} - line that intersects curve at one point
843
844 \subsection*{First principles derivative}
845
846 \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
847
848 \subsubsection*{Logarithmic identities}
849
850 \(\log_b (xy)=\log_b x + \log_b y\)\\
851 \(\log_b x^n = n \log_b x\)\\
852 \(\log_b y^{x^n} = x^n \log_b y\)
853
854 \subsubsection*{Index identities}
855
856 \(b^{m+n}=b^m \cdot b^n\)\\
857 \((b^m)^n=b^{m \cdot n}\)\\
858 \((b \cdot c)^n = b^n \cdot c^n\)\\
859 \({a^m \div a^n} = {a^{m-n}}\)
860
861 \subsection*{Reciprocal derivatives}
862
863 \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
864
865 \subsection*{Differentiating \(x=f(y)\)}
866 Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
867
868 \subsection*{Second derivative}
869 \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
870 \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
871
872 \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
873
874 \subsubsection*{Points of Inflection}
875
876 \emph{Stationary point} - i.e.
877 \(f^\prime(x)=0\)\\
878 \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
879 \(f^{\prime\prime} = 0\))
880
881 \subsubsection*{Strictly increasing/decreasing}
882
883 For \(x_2\) and \(x_1\) where \(x_2 > x_1\):
884
885 \textbf{Strictly increasing}\\
886 \hspace{1em}where \(f(x_2) > f(x_1)\) or \(f^\prime(x)>0\)
887 \textbf{strictly decreasing}\\
888 \hspace{1em}where \(f(x_2) < f(x_1)\) or \(f^\prime(x)<0\)
889 \begin{warning}
890 Endpoints are included, even where gradient \(=0\)
891 \end{warning}
892
893
894 \begin{table*}[ht]
895 \centering
896 \begin{tabularx}{\textwidth}{rYYY}
897 \hline
898 \rowcolor{shade2}
899 & \adjustbox{margin=0 1ex, valign=m}{\centering\(\dfrac{d^2 y}{dx^2} > 0\)} & \adjustbox{margin=0 1ex, valign=m}{\centering \(\dfrac{d^2y}{dx^2}<0\)} & \adjustbox{margin=0 1ex, valign=m}{\(\dfrac{d^2y}{dx^2}=0\) (inflection)} \\
900 \hline
901 \(\dfrac{dy}{dx}>0\) &
902 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3, xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x)}; \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
903 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))}; \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
904 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5, xmax=1.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
905 \hline
906 \(\dfrac{dy}{dx}<0\) &
907 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
908 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0, xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)}; \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
909 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5, xmax=4.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
910 \hline
911 \(\dfrac{dy}{dx}=0\)&
912 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}& \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x)}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
913 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Stationary inflection point}\\
914 \hline
915 \end{tabularx}
916 \end{table*}
917 \begin{itemize}
918 \item
919 if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
920 \((a, f(a))\) is a local min (curve is concave up)
921 \item
922 if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
923 \((a, f(a))\) is local max (curve is concave down)
924 \item
925 if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
926 inflection
927 \item
928 if also \(f^\prime(a)=0\), then it is a stationary point of inflection
929 \end{itemize}
930
931 \subsection*{Implicit Differentiation}
932
933 \noindent Used for differentiating circles etc.
934
935 If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
936 for all \(x\) and \(y\), then:
937
938 \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
939
940 \begin{cas}
941 Action \(\rightarrow\) Calculation \\
942 \hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)} \hfill(returns \(y^\prime= \dots\))
943 \end{cas}
944
945 \subsection*{Slope fields}
946
947 \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
948 \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
949 \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
950 \pgfplotsinvokeforeach{-4,...,4}{%
951 \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
952 \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
953 \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
954 \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
955 \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
956 \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
957 \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
958 \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
959 \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
960 }
961 \end{axis}
962 \end{tikzpicture}
963
964 \subsection*{Parametric equations}
965
966 For each point on \(\left( f(t), g(t) \right)\):
967
968 \begin{align*}
969 \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
970 \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
971 \text{Also...} \\
972 \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
973 \end{align*}
974
975 \subsection*{Integration}
976
977 \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
978
979 \subsubsection*{Definite integrals}
980
981 \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
982
983 \begin{itemize}
984
985 \item
986 Signed area enclosed by\\
987 \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
988 \item
989 \emph{Integrand} is \(f\).
990 \end{itemize}
991
992 \subsubsection*{Properties}
993
994 \begin{align*}
995 \int^b_a f(x) \> dx &= \int^c_a f(x) \> dx + \int^b_c f(x) \> dx \\
996 \int^a_a f(x) \> dx &= 0 \\
997 \int^b_a k \cdot f(x) \> dx &= k \int^b_a f(x) \> dx \\
998 \int^b_a f(x) \pm g(x) \> dx &= \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx \\
999 \int^b_a f(x) \> dx &= - \int^a_b f(x) \> dx \\
1000 \end{align*}
1001
1002 \subsection*{Integration by substitution}
1003
1004 \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
1005
1006 \begin{warning}
1007 \(\boldsymbol{f(u)}\) must be 1:1 \(\boldsymbol{\implies}\) one \(\boldsymbol{x}\) for each \(\boldsymbol{y}\)
1008 \end{warning}
1009 \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
1010 \text{let } u&=x+4\\
1011 \implies& {\frac{du}{dx}} = 1\\
1012 \implies& x = u - 4\\
1013 \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
1014 &\text{(solve as normal integral)}
1015 \end{align*}
1016
1017 \subsubsection*{Definite integrals by substitution}
1018
1019 For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1020 \(b\) for \(f(u) \cdot du\).
1021
1022 \subsubsection*{Trigonometric integration}
1023
1024 \[\sin^m x \cos^n x \cdot dx\]
1025
1026 \paragraph{\textbf{\(m\) is odd:}}
1027 \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1028 \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1029 Substitute \(u=\cos x\)
1030
1031 \paragraph{\textbf{\(n\) is odd:}}
1032 \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1033 \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1034 Substitute \(u=\sin x\)
1035
1036 \paragraph{\textbf{\(m\) and \(n\) are even:}}
1037 use identities...
1038
1039 \begin{itemize}
1040
1041 \item
1042 \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1043 \item
1044 \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1045 \item
1046 \(\sin 2x = 2 \sin x \cos x\)
1047 \end{itemize}
1048
1049 \subsection*{Partial fractions}
1050
1051 To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
1052 \begin{align*}
1053 \dfrac{\delta}{\alpha \cdot \beta \cdot \gamma} &= \dfrac{A}{\alpha} + \dfrac{B}{\beta} + \dfrac{C}{\gamma} \tag{1} \\
1054 \text{Multiply by } & (\alpha \cdot \beta \cdot \gamma) \text{:} \\
1055 \delta &= \beta\gamma A + \alpha\gamma B +\alpha\beta C \tag{2} \\
1056 \text{Substitute } x &= \{\alpha, \beta, \gamma\} \text{ into (2) to find denominators}
1057 \end{align*}
1058
1059 \subsubsection*{Repeated linear factors}
1060
1061 \[ \dfrac{p(x)}{(x-a)^n} = \dfrac{A_1}{(x-a)} + \dfrac{A_2}{(x-a)^2} + \dots + \dfrac{A_n}{(x-a)^n} \]
1062
1063 \subsubsection*{Irreducible quadratic factors}
1064
1065 \[ \text{e.g. } \dfrac{3x-4}{(2x-3)(x^2+5)} = \dfrac{A}{2x-3} + \dfrac{Bx+C}{x^2+5} \]
1066
1067 \begin{cas}
1068 Action \(\rightarrow\) Transformation:\\
1069 \hspace{1em} \texttt{expand(..., x)}
1070
1071 To reverse, use \texttt{combine(...)}
1072 \end{cas}
1073
1074 \subsection*{Graphing integrals on CAS}
1075
1076 \begin{cas}
1077 \textbf{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) \(\int\)\\
1078 Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
1079 \end{cas}
1080
1081 \subsection*{Applications of antidifferentiation}
1082
1083 \begin{itemize}
1084
1085 \item
1086 \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1087 stationary points on \(y=F(x)\)
1088 \item
1089 nature of stationary points is determined by sign of \(y=f(x)\) on
1090 either side of its \(x\)-intercepts
1091 \item
1092 if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1093 \(n+1\)
1094 \end{itemize}
1095
1096 To find stationary points of a function, substitute \(x\) value of given
1097 point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1098 original function.
1099
1100 \subsection*{Solids of revolution}
1101
1102 Approximate as sum of infinitesimally-thick cylinders
1103
1104 \subsubsection*{Rotation about \(\boldsymbol{x}\)-axis}
1105
1106 \[ V = \pi\int^{x=b}_{x=a} f(x)^2 \> dx \]
1107
1108 \subsubsection*{Rotation about \(\boldsymbol{y}\)-axis}
1109
1110 \begin{align*}
1111 V &= \pi \int^{y=b}_{y=a} x^2 \> dy \\
1112 &= \pi \int^{y=b}_{y=a} (f(y))^2 \> dy
1113 \end{align*}
1114
1115 \subsubsection*{Regions not bound by \(\boldsymbol{y=0}\)}
1116
1117 \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1118 \hfill where \(f(x) > g(x)\)
1119
1120 \subsection*{Length of a curve}
1121
1122 \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1123
1124 \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1125
1126 \begin{cas}
1127 \begin{enumerate}[label=\alph*), leftmargin=5mm]
1128 \item Evaluate formula
1129 \item Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1130 \end{enumerate}
1131 \end{cas}
1132
1133 \subsection*{Rates}
1134
1135 \subsubsection*{Gradient at a point on parametric curve}
1136
1137 \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1138
1139 \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1140
1141 \subsection*{Rational functions}
1142
1143 \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1144
1145 \subsubsection*{Addition of ordinates}
1146
1147 \begin{itemize}
1148
1149 \item
1150 when two graphs have the same ordinate, \(y\)-coordinate is double the
1151 ordinate
1152 \item
1153 when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1154 (\(x\)-intercept)
1155 \item
1156 when one of the ordinates is 0, the resulting ordinate is equal to the
1157 other ordinate
1158 \end{itemize}
1159
1160 \subsection*{Fundamental theorem of calculus}
1161
1162 If \(f\) is continuous on \([a, b]\), then
1163
1164 \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1165 \hfill where \(F = \int f \> dx\)
1166
1167 \subsection*{Differential equations}
1168
1169 \noindent\textbf{Order} - highest power inside derivative\\
1170 \textbf{Degree} - highest power of highest derivative\\
1171 e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1172
1173 \subsubsection*{Verifying solutions}
1174
1175 Start with \(y=\dots\), and differentiate. Substitute into original
1176 equation.
1177
1178 \subsubsection*{Function of the dependent
1179 variable}
1180
1181 If \({\frac{dy}{dx}}=g(y)\), then
1182 \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1183 \(e^c\) as \(A\).
1184
1185
1186
1187 \subsubsection*{Mixing problems}
1188
1189 \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1190
1191 \subsubsection*{Separation of variables}
1192
1193 If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1194
1195 \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1196
1197 \subsubsection*{Euler's method for solving DEs}
1198
1199 \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1200
1201 \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1202
1203 \include{calculus-rules}
1204
1205 \section{Kinematics \& Mechanics}
1206
1207 \subsection*{Constant acceleration}
1208
1209 \begin{itemize}
1210 \item \textbf{Position} - relative to origin
1211 \item \textbf{Displacement} - relative to starting point
1212 \end{itemize}
1213
1214 \subsubsection*{Velocity-time graphs}
1215
1216 \begin{itemize}
1217 \item Displacement: \textit{signed} area between graph and \(t\) axis
1218 \item Distance travelled: \textit{total} area between graph and \(t\) axis
1219 \end{itemize}
1220
1221 \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1222
1223 \begin{center}
1224 \renewcommand{\arraystretch}{1}
1225 \begin{tabular}{ l r }
1226 \hline & no \\ \hline
1227 \(v=u+at\) & \(x\) \\
1228 \(v^2 = u^2+2as\) & \(t\) \\
1229 \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1230 \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1231 \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1232 \end{tabular}
1233 \end{center}
1234
1235 \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1236 \begin{align*}
1237 \text{speed} &= |{\text{velocity}}| \\
1238 &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1239 \end{align*}
1240
1241 \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1242 \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
1243
1244 \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1245 \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1246
1247 \subsection*{Vector functions}
1248
1249 \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1250
1251 \begin{itemize}
1252 \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1253 \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1254 \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1255 \end{itemize}
1256
1257 \subsection*{Vector calculus}
1258
1259 \subsubsection*{Derivative}
1260
1261 Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1262 \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1263
1264 \subfile{dynamics}
1265 \subfile{statistics}
1266 \end{multicols}
1267\end{document}