e22575b2f61b1945861644d505f4a40a0feb3a43
1\documentclass[a4paper, tikz]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{array}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{tcolorbox}
7\usepackage{fancyhdr}
8\usepackage{pgfplots}
9\usepackage{tikz}
10\usetikzlibrary{arrows,
11 calc,
12 decorations,
13 scopes,
14}
15\usepackage{tabularx}
16\usepackage{keystroke}
17\usepackage{listings}
18\usepackage{xcolor} % used only to show the phantomed stuff
19\definecolor{cas}{HTML}{e6f0fe}
20
21\pagestyle{fancy}
22\fancyhead[LO,LE]{Year 12 Specialist - Dynamics}
23\fancyhead[CO,CE]{Andrew Lorimer}
24
25\setlength\parindent{0pt}
26
27\begin{document}
28
29 \title{Dynamics}
30 \author{}
31 \date{}
32 \maketitle
33
34 \section{Resolution of forces}
35
36 \textbf{Resultant force} is sum of force vectors
37
38 \subsection{In angle-magnitude form}
39
40 \makebox[3cm]{Cosine rule:} \(c^2=a^2+b^2-2ab\cos\theta\)
41 \makebox[3cm]{Sine rule:} \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
42
43 \subsection{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form}
44
45 Vector of \(a\) N at \(\theta\) to \(x\) axis is equal to \(a \cos \theta \boldsymbol{i} + a \sin \theta \boldsymbol{j}\). Convert all force vectors then add.
46
47 To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = \tan^{-1} \frac{b}{a}\)
48
49 \subsection{Resolving in a given direction}
50
51 The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\)
52
53 \section{Newton's laws}
54
55 \begin{enumerate}
56 \item Velocity is constant without a net external velocity
57 \item \(\frac{d}{dt} \rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\)
58 \item Equal and opposite forces
59 \end{enumerate}
60
61 \subsection{Weight}
62 A mass of \(m\) kg has force of \(mg\) acting on it
63
64 \subsection{Momentum \(\rho\)}
65 \[ \rho = mv \tag{units kg m/s or Ns} \]
66
67 \subsection{Reaction force \(R\)}
68
69 \begin{itemize}
70 \item With no vertical velocity, \(R=mg\)
71 \item With upwards acceleration, \(R-mg=ma\)
72 \item With force \(F\) at angle \(\theta\), then \(R=mg-F\sin\theta\)
73 \end{itemize}
74
75 \subsection{Friction}
76
77 \[ F_R = \mu R \tag{friction coefficient} \]
78
79 \section{Inclined planes}
80
81 \[ \boldsymbol{F} = |\boldsymbol{F}| \cos \theta \boldsymbol{i} + |\boldsymbol{F}| \sin \theta \boldsymbol{j} \]
82 \def\iangle{30} % Angle of the inclined plane
83
84 \def\down{-90}
85 \def\arcr{0.5cm} % Radius of the arc used to indicate angles
86
87\begin{tikzpicture}[
88 >=latex',
89 scale=1,
90 force/.style={->,draw=blue,fill=blue},
91 axis/.style={densely dashed,gray,font=\small},
92 M/.style={rectangle,draw,fill=lightgray,minimum size=0.5cm,thin},
93 m/.style={rectangle,draw=black,fill=lightgray,minimum size=0.3cm,thin},
94 plane/.style={draw=black,fill=blue!10},
95 string/.style={draw=red, thick},
96 pulley/.style={thick},
97 ]
98 \pgfmathsetmacro{\Fnorme}{2}
99 \pgfmathsetmacro{\Fangle}{30}
100 \begin{scope}[rotate=\iangle]
101 \node[M,transform shape] (M) {};
102 \coordinate (xmin) at ($(M.south west)-({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
103 \coordinate (xmax) at ($(M.south east)+({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
104 \coordinate (ymax) at ($(M.north)+(0, {abs(1.1*\Fnorme*cos(-\Fangle))})$);
105 \coordinate (ymin) at ($(M.south)-(0, 1cm)$);
106 \coordinate (axiscentre) at ($(M.south)+(0.5cm, 0.5cm)$);
107 \draw[postaction={decorate, decoration={border, segment length=2pt, angle=-45},draw,red}] (xmin) -- (xmax);
108 \coordinate (N) at ($(M.center)+(0,{\Fnorme*cos(-\Fangle)})$);
109 \coordinate (fr) at ($(M.center)+({\Fnorme*sin(-\Fangle)}, 0)$);
110 % Draw axes and help lines
111
112 {[axis,->]
113 \draw (ymin) -- (ymax) node[right] {\(\boldsymbol{j}\)};
114 \draw (M) --(M-|xmax) node[right] {\(\boldsymbol{i}\)}; % mental note for me: change "right" to "above"
115 }
116
117 % Forces
118 {[force,->]
119 % Assuming that Mg = 1. The normal force will therefore be cos(alpha)
120 \draw (M.center) -- (N) node [right] {\(R\)};
121 \draw (M.center) -- (fr) node [left] {\(\mu R\)};
122 }
123% \draw [densely dotted, gray] (fr) |- (N) node [pos=.25, left] {\tiny$\lVert \vec F\rVert\cos\theta$} node [pos=.75, above] {\tiny$\lVert \vec F\rVert\sin\theta$};
124 \end{scope}
125 % Draw gravity force. The code is put outside the rotated
126 % scope for simplicity. No need to do any angle calculations.
127 \draw[force,->] (M.center) -- ++(0,-1) node[below] {$mg$};
128 \draw (M.center)+(-90:\arcr) arc [start angle=-90,end angle=\iangle-90,radius=\arcr] node [below, pos=.5] {\tiny\(\theta\)};
129 \end{tikzpicture}
130
131 \subsection{Connected particles}
132
133 \begin{itemize}
134 \item \textbf{Suspended pulley:} tension in both sections of rope are equal
135 \item \textbf{Linear connection:} find acceleration of system first
136 \item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane
137 \end{itemize}
138
139\end{document}