e72225e3b7bbf2d5a170930723ed6a9fa50e03c3
1---
2geometry: margin=2cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7classoption: twocolumn
8header-includes:
9- \usepackage{harpoon}
10- \usepackage{amsmath}
11- \pagenumbering{gobble}
12
13---
14
15
16# Complex & Imaginary Numbers
17
18## Imaginary numbers
19
20$$i^2 = -1 \quad \therefore i = \sqrt {-1}$$
21
22### Simplifying negative surds
23
24\begin{equation}\begin{split}\sqrt{-2} & = \sqrt{-1 \times 2} \\ & = \sqrt{2}i\end{split}\end{equation}
25
26
27## Complex numbers
28
29$$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$$
30
31General form: $z=a+bi$
32$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$
33
34### Addition
35
36If $z_1 = a+bi$ and $z_2=c+di$, then
37
38$$z_1+z_2 = (a+c)+(b+d)i$$
39
40### Subtraction
41
42If $z_1=a+bi$ and $z_2=c+di$, then
43
44$$z_1−z_2=(a−c)+(b−d)i$$
45
46### Multiplication by a real constant
47
48If $z=a+bi$ and $k \in \mathbb{R}$, then
49
50$$kz=ka+kbi$$
51
52### Powers of $i$
53
54- $i^{4n} = 1$
55- $i^{4n+1} = i$
56- $i^{4n+2} = -1$
57- $i^{4n+3} = -i$
58
59For $i^n$, find remainder $r$ when $n \div 4$. Then $i^n = i^r$.
60
61### Multiplying complex expressions
62
63If $z_1 = a+bi$ and $z_2=c+di$, then
64
65$$z_1 \times z_2 = (ac-bd)+(ad+bc)i$$
66
67### Conjugates
68
69If $z=a+bi$, conjugate is
70
71$$\overline{z} = a-bi$$
72
73##### Properties
74
75- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
76- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$
77- $\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}$
78- $z \overline{z} = = (a+bi)(a-bi) = a^2+b^2 = |z|^2$
79- $z + \overline{z} = 2 \operatorname{Re}(z)$
80
81### Modulus
82
83Distance from origin.
84
85$$|{z}|=\sqrt{a^2+b^2} \quad \therefore z \overline{z} = |z|^2$$
86
87###### Properties
88
89- $|z_1 z_2| = |z_1| |z_2|$
90- $|{z_1 \over z_2}| = {|z_1| \over |z_2|}$
91- $|z_1 + z_2| \le |z_1 + |z_2|$
92
93### Multiplicative inverse
94
95\begin{equation}\begin{split}z^{-1} & = {1 \over z} \\ & = {{a-bi} \over {a^2+B^2}} \\ & = {\overline{z} \over {|z|^2}}\end{split}\end{equation}
96
97### Dividing complex numbers
98
99$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}$$
100
101In practice, rationalise denominator:
102
103$${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$$
104
105## Argand planes
106
107- Geometric representation of $\mathbb{C}$
108- horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$
109- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$
110
111## Solving complex polynomials
112
113**Include $\pm$ for all solutions, including imaginary**
114
115## Solving complex quadratics
116
117To solve $z^2+a^2=0$ (sum of two squares):
118
119$$z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$$
120
121#### Dividing complex polynomials
122
123Dividing $P(z)$ by $D(z)$ gives quotient $Q(z)$ and remainder $R(z)$ such that:
124
125$$P(z) = D(z)Q(z) + R(z)$$
126
127#### Remainder theorem
128
129Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$
130
131#### Factor theorem
132If $a+bi$ is a solution to $P(z)=0$, then:
133
134- $P(a+bi)=0$
135- $z-(a+bi)$ is a factor of $P(z)$
136
137## Conjugate root theorem
138
139If $a+bi$ is a solution to $P(z)=0$, with $a, b \in \mathbb{R}$, then the conjugate $\overline{z}=a-bi$ is also a solution.
140
141## Polar form
142
143\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation}
144
145- $r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$
146- $\theta=\operatorname{arg}(z)$ (on CAS: `arg(a+bi)`)
147- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ (note capital $\operatorname{Arg}$)
148
149Note each complex number has multiple polar representations:
150$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
151
152### Conjugate in polar form
153
154$$(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)$$
155
156Reflection of $z$ across horizontal axis.
157
158### Multiplication and division in polar form
159
160$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)
161
162${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles)
163
164## de Moivres' Theorem
165
166$$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}$$
167
168## Roots of complex numbers
169
170$n$th roots of $z = r \operatorname{cis} \theta$ are
171
172$$z={r^{1 \over n}} \operatorname{cis}({{\theta + 2 k \pi} \over n})$$
173
174Same modulus for all solutions. Arguments are separated by ${2 \pi} \over n$
175
176The solutions of $z^n=a \text{ where } a \in \mathbb{C}$ lie on circle
177
178$$x^2 + y^2 = (|a|^{1 \over n})^2$$
179
180## Sketching complex graphs
181
182- **Straight line:** $\operatorname{Re}(z) = c$ or $\operatorname{Im}(z) = c$ (perpendicular bisector) or $\operatorname{Arg}(z) = \theta$
183- **Circle:** $|z-z_1|^2 = c^2 |z_2+2|^2$ or $|z-(a + bi)| = c$
184- **Locus:** $\operatorname{Arg}(z) < \theta$