e747466de93d642db8a9f7785a72ac874570398d
1\documentclass[a4paper]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{multicol}
4\usepackage{dblfloatfix}
5\usepackage{multirow}
6\usepackage{amsmath}
7\usepackage{amssymb}
8\usepackage{harpoon}
9\usepackage{tabularx}
10\usepackage{makecell}
11\usepackage{enumitem}
12\usepackage[obeyspaces]{url}
13\usepackage[dvipsnames, table]{xcolor}
14\usepackage{blindtext}
15\usepackage{graphicx}
16\usepackage{wrapfig}
17\usepackage{tikz}
18\usepackage{tkz-fct}
19\usepackage{tikz-3dplot}
20\usepackage{pgfplots}
21\usetikzlibrary{arrows,
22 decorations,
23 decorations.markings,
24 decorations.text,
25 decorations.pathreplacing,
26 scopes
27}
28\usetikzlibrary{datavisualization.formats.functions}
29\usetikzlibrary{decorations.markings}
30\usepgflibrary{arrows.meta}
31\usetikzlibrary{decorations.markings}
32\usepgflibrary{arrows.meta}
33\usepackage{pst-plot}
34\psset{dimen=monkey,fillstyle=solid,opacity=.5}
35\def\object{%
36 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
37 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
38 \rput{*0}{%
39 \psline{->}(0,-2)%
40 \uput[-90]{*0}(0,-2){$\vec{w}$}}
41}
42
43\usetikzlibrary{calc}
44\usetikzlibrary{angles}
45\usetikzlibrary{datavisualization.formats.functions}
46\usetikzlibrary{decorations.markings}
47\usepgflibrary{arrows.meta}
48\usepackage{fancyhdr}
49\pagestyle{fancy}
50\fancyhead[LO,LE]{Year 12 Specialist}
51\fancyhead[CO,CE]{Andrew Lorimer}
52\usepackage{mathtools}
53\usepackage{xcolor} % used only to show the phantomed stuff
54\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
55\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
56\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
57\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
58\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
59\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
60\definecolor{cas}{HTML}{e6f0fe}
61\definecolor{important}{HTML}{fc9871}
62\definecolor{dark-gray}{gray}{0.2}
63\linespread{1.5}
64\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
65\newcommand{\tg}{\mathop{\mathrm{tg}}}
66\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
67\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
68\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
69\pgfplotsset{every axis/.append style={
70 axis x line=middle, % put the x axis in the middle
71 axis y line=middle, % put the y axis in the middle
72 axis line style={->}, % arrows on the axis
73 xlabel={$x$}, % default put x on x-axis
74 ylabel={$y$}, % default put y on y-axis
75}}
76\usepackage{tcolorbox}
77\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
78\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
79\usepackage{keystroke}
80\usepackage{listings}
81\usepackage{mathtools}
82\pgfplotsset{compat=1.16}
83\usepackage{subfiles}
84\usepackage{import}
85\setlength{\parindent}{0pt}
86\begin{document}
87
88\begin{multicols}{2}
89
90 \section{Complex numbers}
91
92 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
93
94 \begin{align*}
95 \text{Cartesian form: } & a+bi\\
96 \text{Polar form: } & r\operatorname{cis}\theta
97 \end{align*}
98
99 \subsection*{Operations}
100
101 \definecolor{shade1}{HTML}{ffffff}
102 \definecolor{shade2}{HTML}{e6f2ff}
103 \definecolor{shade3}{HTML}{cce2ff}
104 \begin{tabularx}{\columnwidth}{r|X|X}
105 & \textbf{Cartesian} & \textbf{Polar} \\
106 \hline
107 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
108 \hline
109 \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
110 \cline{1-1}\cline{3-3}
111 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
112 \hline
113 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
114 \hline
115 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
116 \end{tabularx}
117
118 \subsubsection*{Scalar multiplication in polar form}
119
120 For \(k \in \mathbb{R}^+\):
121 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
122
123 \noindent For \(k \in \mathbb{R}^-\):
124 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
125
126 \subsection*{Conjugate}
127
128 \begin{align*}
129 \overline{z} &= a \mp bi\\
130 &= r \operatorname{cis}(-\theta)
131 \end{align*}
132
133 \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
134
135 \subsubsection*{Properties}
136
137 \begin{align*}
138 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
139 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
140 \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
141 z\overline{z} &= (a+bi)(a-bi)\\
142 &= a^2 + b^2\\
143 &= |z|^2
144 \end{align*}
145
146 \subsection*{Modulus}
147
148 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
149
150 \subsubsection*{Properties}
151
152 \begin{align*}
153 |z_1z_2|&=|z_1||z_2|\\
154 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
155 |z_1+z_2|&\le|z_1|+|z_2|
156 \end{align*}
157
158 \subsection*{Multiplicative inverse}
159
160 \begin{align*}
161 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
162 &=\frac{\overline{z}}{|z|^2}a\\
163 &=r \operatorname{cis}(-\theta)
164 \end{align*}
165
166 \subsection*{Dividing over \(\mathbb{C}\)}
167
168 \begin{align*}
169 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
170 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
171 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
172 & \qquad \text{(rationalise denominator)}
173 \end{align*}
174
175 \subsection*{Polar form}
176
177 \begin{align*}
178 z&=r\operatorname{cis}\theta\\
179 &=r(\cos \theta + i \sin \theta)
180 \end{align*}
181
182 \begin{itemize}
183 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
184 \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
185 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
186 \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
187 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
188 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
189 \end{itemize}
190
191 \subsection*{de Moivres' theorem}
192
193 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
194
195 \subsection*{Complex polynomials}
196
197 Include \(\pm\) for all solutions, incl. imaginary
198
199 \begin{tabularx}{\columnwidth}{ R{0.55} X }
200 \hline
201 Sum of squares & \(\begin{aligned}
202 z^2 + a^2 &= z^2-(ai)^2\\
203 &= (z+ai)(z-ai) \end{aligned}\) \\
204 \hline
205 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
206 \hline
207 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
208 \hline
209 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
210 \hline
211 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
212 \hline
213 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
214 \hline
215 \end{tabularx}
216
217 \subsection*{\(n\)th roots}
218
219 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
220
221 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
222
223 \begin{itemize}
224
225 \item{Same modulus for all solutions}
226 \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
227 \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
228 \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
229 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
230 \end{itemize}
231
232 \noindent For \(0=az^2+bz+c\), use quadratic formula:
233
234 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
235
236 \subsection*{Fundamental theorem of algebra}
237
238 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
239
240 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
241 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
242
243 \subsection*{Argand planes}
244
245 \begin{center}\begin{tikzpicture}[scale=2]
246 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
247 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
248 \coordinate (P) at (1,1);
249 \coordinate (a) at (1,0);
250 \coordinate (b) at (0,1);
251 \coordinate (O) at (0,0);
252 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
253 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
254 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
255 \begin{scope}
256 \path[clip] (O) -- (P) -- (a);
257 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
258 \node at ($(O)+(20:3mm)$) {$\theta$};
259 \end{scope}
260 \filldraw (P) circle (0.5pt);
261 \end{tikzpicture}\end{center}
262
263 \begin{itemize}
264 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
265 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
266 \end{itemize}
267
268 \subsection*{Sketching complex graphs}
269
270 \subsubsection*{Linear}
271
272 \begin{itemize}
273 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
274 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
275 \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
276 \end{itemize}
277
278 \subsubsection*{Circles}
279
280 \begin{itemize}
281 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
282 \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
283 \end{itemize}
284
285 \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
286
287 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
288 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
289 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
290 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
291 \draw [->, thick, blue] (0,0) -- (1,1);
292 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
293 \begin{scope}
294 \path[clip] (0,0) -- (1,1) -- (1,0);
295 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
296 \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
297 \end{scope}
298 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
299 \node [blue, mydot] {};
300 \end{tikzpicture}\end{center}
301
302 \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
303
304 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
305 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
306 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
307 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
308 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
309 \begin{scope}
310 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
311 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
312 \end{scope}
313 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
314 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
315 \node [brown, mydot] at (-0.25,0) {};
316 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
317 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
318 \node [below, font=\footnotesize] at (1,0) {\(1\)};
319 \end{tikzpicture}\end{center}
320
321 \section{Vectors}
322 \begin{center}\begin{tikzpicture}
323 \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)};
324 \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
325 \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
326 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
327 \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
328 \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
329 \end{scope}
330 \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
331 \end{tikzpicture}\end{center}
332 \subsection*{Column notation}
333
334 \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
335 \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
336
337 \subsection*{Scalar multiplication}
338
339 \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
340
341 \noindent For \(k \in \mathbb{R}^-\), direction is reversed
342
343 \subsection*{Vector addition}
344 \begin{center}\begin{tikzpicture}[scale=1]
345 \coordinate (A) at (0,0);
346 \coordinate (B) at (2,2);
347 \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
348 \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
349 \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
350 \end{tikzpicture}\end{center}
351
352 \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
353
354 \begin{itemize}
355 \item Draw each vector head to tail then join lines
356 \item Addition is commutative (parallelogram)
357 \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
358 \end{itemize}
359
360 \subsection*{Magnitude}
361
362 \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
363
364 \subsection*{Parallel vectors}
365
366 \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
367
368 For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
369 \[\boldsymbol{a \cdot b}=\begin{cases}
370 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
371 -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
372 \end{cases}\]
373 %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
374 %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
375
376 \subsection*{Perpendicular vectors}
377
378 \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
379
380 \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
381 \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
382
383 \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
384
385
386 \begin{center}\begin{tikzpicture}[scale=2]
387 \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
388 \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
389 \begin{scope}
390 \path[clip] (1,0.5) -- (1,0) -- (0,0);
391 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
392 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
393 \end{scope}
394 \end{tikzpicture}\end{center}
395 \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
396 \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
397
398 \subsubsection*{Properties}
399
400 \begin{enumerate}
401 \item
402 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
403 \item
404 \(\boldsymbol{a \cdot 0}=0\)
405 \item
406 \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
407 \item
408 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
409 \item
410 \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
411 \item
412 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
413 \end{enumerate}
414
415 \subsection*{Angle between vectors}
416
417 \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
418
419 \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
420
421 (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
422
423 \subsection*{Angle between vector and axis}
424
425 \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
426 which makes angles \(\alpha, \beta, \gamma\) with positive side of
427 \(x, y, z\) axes:
428 \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
429
430 \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
431 between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
432 \(x\)-axis
433
434 \subsection*{Projections \& resolutes}
435
436 \begin{tikzpicture}[scale=3]
437 \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
438 \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
439 \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
440 \begin{scope}
441 \path[clip] (1,0.5) -- (1,0) -- (0,0);
442 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
443 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
444 \end{scope}
445 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
446 \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
447 \end{scope}
448 \draw (0,0) coordinate (O)
449 (1,0) coordinate (A)
450 (1,0.5) coordinate (B)
451 pic [draw,red,angle radius=2mm] {right angle = O--A--B};
452 \end{tikzpicture}
453
454 \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
455
456 \begin{align*}
457 \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
458 & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
459 & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
460 \end{align*}
461
462 \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
463 \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
464
465 \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
466 \begin{align*}
467 s &= |\boldsymbol{u}|\\
468 &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
469 &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
470 &= |\boldsymbol{a}| \cos \theta
471 \end{align*}
472
473 \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
474
475 \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
476
477
478 \subsection*{Vector proofs}
479
480 \textbf{Concurrent:} intersection of \(\ge\) 3 lines
481
482 \begin{tikzpicture}
483 \draw [blue] (0,0) -- (1,1);
484 \draw [red] (1,0) -- (0,1);
485 \draw [brown] (0.4,0) -- (0.6,1);
486 \filldraw (0.5,0.5) circle (2pt);
487 \end{tikzpicture}
488
489 \subsubsection*{Collinear points}
490
491 \(\ge\) 3 points lie on the same line
492
493 \begin{tikzpicture}
494 \draw [purple] (0,0) -- (4,1);
495 \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
496 \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
497 \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
498 \coordinate (O) at (2.8,-0.2);
499 \node at (O) [below] {\(O\)};
500 \begin{scope}[->, orange, thick]
501 \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
502 \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
503 \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
504 \end{scope}
505 \end{tikzpicture}
506
507 \begin{align*}
508 \text{e.g. Prove that}\\
509 \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
510 \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
511 &= \overrightharp{OA} + m\overrightharp{AB}\\
512 &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
513 &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
514 &=(1-m)\boldsymbol{a}+m{b}
515 \end{align*}
516 \begin{align*}
517 \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
518 \text{where } \lambda + \mu &= 1\\
519 \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
520 \end{align*}
521
522
523 \subsubsection*{Parallelograms}
524
525 \begin{center}\begin{tikzpicture}
526 \coordinate (O) at (0,0) node [below left] {\(O\)};
527 \coordinate (A) at (4,0);
528 \coordinate (B) at (6,2);
529 \coordinate (C) at (2,2);
530 \coordinate (D) at (6,0);
531
532 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
533 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
534 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
535 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
536
537 \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
538 \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
539 \begin{scope}
540 \path[clip] (C) -- (A) -- (O);
541 \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
542 \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
543 \end{scope}
544 \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
545 \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
546 \end{tikzpicture}\end{center}
547
548 \begin{itemize}
549 \item
550 Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
551 \item
552 If diagonals are equal length, it is a rectangle
553 \item
554 \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
555 \item
556 Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
557 \end{itemize}
558
559 \subsubsection*{Useful vector properties}
560
561 \begin{itemize}
562 \item
563 \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
564 \(k \in \mathbb{R} \setminus \{0\}\)
565 \item
566 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
567 least one point in common, then they lie on the same straight line
568 \item
569 \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
570 \item
571 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
572 \end{itemize}
573
574 \subsection*{Linear dependence}
575
576 \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
577 \begin{align*}
578 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
579 \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
580 \end{align*}
581
582 \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
583 independent if no vector in the set is expressible as a linear
584 combination of other vectors in set, or if they are parallel.
585
586 \subsection*{Three-dimensional vectors}
587
588 Right-hand rule for axes: \(z\) is up or out of page.
589
590 \tdplotsetmaincoords{60}{120}
591 \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick},
592 vector/.style={-stealth,red,very thick},
593 vector guide/.style={dashed,gray,thick}]
594
595 %standard tikz coordinate definition using x, y, z coords
596 \coordinate (O) at (0,0,0);
597
598 %tikz-3dplot coordinate definition using x, y, z coords
599
600 \pgfmathsetmacro{\ax}{1}
601 \pgfmathsetmacro{\ay}{1}
602 \pgfmathsetmacro{\az}{1}
603
604 \coordinate (P) at (\ax,\ay,\az);
605
606 %draw axes
607 \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
608 \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
609 \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
610
611 %draw a vector from O to P
612 \draw[vector] (O) -- (P);
613
614 %draw guide lines to components
615 \draw[vector guide] (O) -- (\ax,\ay,0);
616 \draw[vector guide] (\ax,\ay,0) -- (P);
617 \draw[vector guide] (P) -- (0,0,\az);
618 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
619 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
620 \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
621 \node[tdplot_main_coords,above right]
622 at (\ax,\ay,\az){(\ax, \ay, \az)};
623 \end{tikzpicture}\end{center}
624
625 \subsection*{Parametric vectors}
626
627 Parametric equation of line through point \((x_0, y_0, z_0)\) and
628 parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
629
630 \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
631
632 \section{Circular functions}
633
634 \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
635
636 \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
637 \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
638
639 \subsection*{Reciprocal functions}
640
641 \subsubsection*{Cosecant}
642
643 \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
644
645 \begin{itemize}
646 \item
647 \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
648 \item
649 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
650 \item
651 \textbf{Turning points} at
652 \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
653 \item
654 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
655 \end{itemize}
656
657 \subsubsection*{Secant}
658
659\begin{tikzpicture}
660 \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
661% \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
662 \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
663 \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
664 \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
665 \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
666 \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
667 \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
668\end{axis}
669 \node [black] at (7,3.5) {\(\cos x\)};
670\end{tikzpicture}
671
672 \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
673
674 \begin{itemize}
675
676 \item
677 \textbf{Domain}
678 \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
679 \item
680 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
681 \item
682 \textbf{Turning points} at
683 \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
684 \item
685 \textbf{Asymptotes} at
686 \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
687 \end{itemize}
688
689 \subsubsection*{Cotangent}
690
691\begin{tikzpicture}
692 \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
693 \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
694\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
695\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
696\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
697\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
698 \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
699 \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
700 \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
701 \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
702 \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
703\end{axis}
704\end{tikzpicture}
705
706 \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
707
708 \begin{itemize}
709
710 \item
711 \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
712 \item
713 \textbf{Range} \(= \mathbb{R}\)
714 \item
715 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
716 \end{itemize}
717
718 \subsubsection*{Symmetry properties}
719
720 \[\begin{split}
721 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
722 \operatorname{sec} (-x) & = \operatorname{sec} x \\
723 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
724 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
725 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
726 \operatorname{cot} (-x) & = - \operatorname{cot} x
727 \end{split}\]
728
729 \subsubsection*{Complementary properties}
730
731 \[\begin{split}
732 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
733 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
734 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
735 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
736 \end{split}\]
737
738 \subsubsection*{Pythagorean identities}
739
740 \[\begin{split}
741 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
742 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
743 \end{split}\]
744
745 \subsection*{Compound angle formulas}
746
747 \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
748 \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
749 \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
750
751 \subsection*{Double angle formulas}
752
753 \[\begin{split}
754 \cos 2x &= \cos^2 x - \sin^2 x \\
755 & = 1 - 2\sin^2 x \\
756 & = 2 \cos^2 x -1
757 \end{split}\]
758
759 \[\sin 2x = 2 \sin x \cos x\]
760
761 \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
762
763 \subsection*{Inverse circular functions}
764
765 \begin{tikzpicture}
766 \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
767 \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
768 \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
769 \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
770 \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
771 \addplot[mark=*, blue] coordinates {(1,0)};
772 \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
773 \end{axis}
774 \end{tikzpicture}\\
775
776 Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
777
778 \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
779 \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
780
781 \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
782 \hfill where \(\cos y = x, \> y \in [0, \pi]\)
783
784 \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
785 \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
786
787 \begin{tikzpicture}
788 \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
789 \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
790 \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
791 \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
792 \end{axis}
793 \end{tikzpicture}
794\columnbreak
795 \section{Differential calculus}
796
797 \subsection*{Limits}
798
799 \[\lim_{x \rightarrow a}f(x)\]
800 \(L^-,\quad L^+\) \qquad limit from below/above\\
801 \(\lim_{x \to a} f(x)\) \quad limit of a point\\
802
803 \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
804 e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
805
806 \subsubsection*{Limit theorems}
807
808 \begin{enumerate}
809 \item
810 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
811 \item
812 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
813 \item
814 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
815 \item
816 \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
817 \item
818 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
819 \item
820 \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
821 \end{enumerate}
822
823 \subsection*{Gradients of secants and tangents}
824
825 \textbf{Secant (chord)} - line joining two points on curve\\
826 \textbf{Tangent} - line that intersects curve at one point
827
828 \subsection*{First principles derivative}
829
830 \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
831
832 \subsubsection*{Logarithmic identities}
833
834 \(\log_b (xy)=\log_b x + \log_b y\)\\
835 \(\log_b x^n = n \log_b x\)\\
836 \(\log_b y^{x^n} = x^n \log_b y\)
837
838 \subsubsection*{Index identities}
839
840 \(b^{m+n}=b^m \cdot b^n\)\\
841 \((b^m)^n=b^{m \cdot n}\)\\
842 \((b \cdot c)^n = b^n \cdot c^n\)\\
843 \({a^m \div a^n} = {a^{m-n}}\)
844
845 \subsection*{Derivative rules}
846
847 \renewcommand{\arraystretch}{1.4}
848 \begin{tabularx}{\columnwidth}{rX}
849 \hline
850 \(f(x)\) & \(f^\prime(x)\)\\
851 \hline
852 \(\sin x\) & \(\cos x\)\\
853 \(\sin ax\) & \(a\cos ax\)\\
854 \(\cos x\) & \(-\sin x\)\\
855 \(\cos ax\) & \(-a \sin ax\)\\
856 \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
857 \(e^x\) & \(e^x\)\\
858 \(e^{ax}\) & \(ae^{ax}\)\\
859 \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
860 \(\log_e x\) & \(\dfrac{1}{x}\)\\
861 \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
862 \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
863 \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
864 \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
865 \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
866 \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
867 \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\
868 \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\
869 \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\
870 \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
871 \hline
872 \end{tabularx}
873
874 \subsection*{Reciprocal derivatives}
875
876 \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
877
878 \subsection*{Differentiating \(x=f(y)\)}
879 \begin{align*}
880 \text{Find }& \frac{dx}{dy}\\
881 \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
882 \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
883 \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
884 \end{align*}
885
886 \subsection*{Second derivative}
887 \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
888 \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
889
890 \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
891
892 \subsubsection*{Points of Inflection}
893
894 \emph{Stationary point} - i.e.
895 \(f^\prime(x)=0\)\\
896 \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
897 \(f^{\prime\prime} = 0\))
898
899
900 \begin{table*}[ht]
901 \centering
902 \begin{tabularx}{\textwidth}{rXXX}
903 \hline
904 \rowcolor{shade2}
905 & \centering\(\dfrac{d^2 y}{dx^2} > 0\) & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
906 \hline
907 \(\dfrac{dy}{dx}>0\) &
908 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3, xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x))}; \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
909 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))}; \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
910 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5, xmax=1.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
911 \hline
912 \(\dfrac{dy}{dx}<0\) &
913 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {(1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
914 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0, xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)}; \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
915 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5, xmax=4.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
916 \hline
917 \(\dfrac{dy}{dx}=0\)&
918 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}& \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x))}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
919 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Stationary inflection point}\\
920 \hline
921 \end{tabularx}
922 \end{table*}
923 \begin{itemize}
924 \item
925 if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
926 \((a, f(a))\) is a local min (curve is concave up)
927 \item
928 if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
929 \((a, f(a))\) is local max (curve is concave down)
930 \item
931 if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
932 inflection
933 \item
934 if also \(f^\prime(a)=0\), then it is a stationary point of inflection
935 \end{itemize}
936
937 \subsection*{Implicit Differentiation}
938
939 \noindent Used for differentiating circles etc.
940
941 If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
942 for all \(x\) and \(y\), then:
943
944 \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
945
946 \noindent \colorbox{cas}{\textbf{On CAS:}}\\
947 Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
948 Returns \(y^\prime= \dots\).
949
950 \subsection*{Integration}
951
952 \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
953
954 \subsection*{Integral laws}
955
956 \renewcommand{\arraystretch}{1.4}
957 \begin{tabularx}{\columnwidth}{rX}
958 \hline
959 \(f(x)\) & \(\int f(x) \cdot dx\) \\
960 \hline
961 \(k\) (constant) & \(kx + c\)\\
962 \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
963 \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
964 \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
965 \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
966 \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
967 \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
968 \(e^k\) & \(e^kx + c\)\\
969 \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
970 \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
971 \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
972 \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
973 \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
974 \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
975 \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
976 \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
977 \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
978 \hline
979 \end{tabularx}
980
981 Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
982
983 \subsection*{Definite integrals}
984
985 \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
986
987 \begin{itemize}
988
989 \item
990 Signed area enclosed by\\
991 \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
992 \item
993 \emph{Integrand} is \(f\).
994 \end{itemize}
995
996 \subsubsection*{Properties}
997
998 \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
999
1000 \[\int^a_a f(x) \> dx = 0\]
1001
1002 \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
1003
1004 \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
1005
1006 \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
1007
1008 \subsection*{Integration by substitution}
1009
1010 \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
1011
1012 \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
1013 \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
1014 \text{let } u&=x+4\\
1015 \implies& {\frac{du}{dx}} = 1\\
1016 \implies& x = u - 4\\
1017 \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
1018 &\text{(solve as normal integral)}
1019 \end{align*}
1020
1021 \subsubsection*{Definite integrals by substitution}
1022
1023 For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1024 \(b\) for \(f(u) \cdot du\).
1025
1026 \subsubsection*{Trigonometric integration}
1027
1028 \[\sin^m x \cos^n x \cdot dx\]
1029
1030 \paragraph{\textbf{\(m\) is odd:}}
1031 \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1032 \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1033 Substitute \(u=\cos x\)
1034
1035 \paragraph{\textbf{\(n\) is odd:}}
1036 \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1037 \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1038 Substitute \(u=\sin x\)
1039
1040 \paragraph{\textbf{\(m\) and \(n\) are even:}}
1041 use identities...
1042
1043 \begin{itemize}
1044
1045 \item
1046 \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1047 \item
1048 \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1049 \item
1050 \(\sin 2x = 2 \sin x \cos x\)
1051 \end{itemize}
1052
1053 \subsection*{Partial fractions}
1054
1055 \colorbox{cas}{On CAS:}\\
1056 \indent Action \(\rightarrow\) Transformation \(\rightarrow\)
1057 \texttt{expand/combine}\\
1058 \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
1059 Expand \(\rightarrow\) Partial
1060
1061 \subsection*{Graphing integrals on CAS}
1062
1063 \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
1064 \(\int\) (\(\rightarrow\) Definite)\\
1065 Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
1066
1067 \subsection*{Applications of antidifferentiation}
1068
1069 \begin{itemize}
1070
1071 \item
1072 \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1073 stationary points on \(y=F(x)\)
1074 \item
1075 nature of stationary points is determined by sign of \(y=f(x)\) on
1076 either side of its \(x\)-intercepts
1077 \item
1078 if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1079 \(n+1\)
1080 \end{itemize}
1081
1082 To find stationary points of a function, substitute \(x\) value of given
1083 point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1084 original function.
1085
1086 \subsection*{Solids of revolution}
1087
1088 Approximate as sum of infinitesimally-thick cylinders
1089
1090 \subsubsection*{Rotation about \(x\)-axis}
1091
1092 \begin{align*}
1093 V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
1094 &= \pi \int^b_a (f(x))^2 \> dx
1095 \end{align*}
1096
1097 \subsubsection*{Rotation about \(y\)-axis}
1098
1099 \begin{align*}
1100 V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
1101 &= \pi \int^b_a (f(y))^2 \> dy
1102 \end{align*}
1103
1104 \subsubsection*{Regions not bound by \(y=0\)}
1105
1106 \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1107 \hfill where \(f(x) > g(x)\)
1108
1109 \subsection*{Length of a curve}
1110
1111 \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1112
1113 \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1114
1115 \noindent \colorbox{cas}{On CAS:}\\
1116 \indent Evaluate formula,\\
1117 \indent or Interactive \(\rightarrow\) Calculation
1118 \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1119
1120 \subsection*{Rates}
1121
1122 \subsubsection*{Gradient at a point on parametric curve}
1123
1124 \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1125
1126 \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1127
1128 \subsection*{Rational functions}
1129
1130 \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1131
1132 \subsubsection*{Addition of ordinates}
1133
1134 \begin{itemize}
1135
1136 \item
1137 when two graphs have the same ordinate, \(y\)-coordinate is double the
1138 ordinate
1139 \item
1140 when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1141 (\(x\)-intercept)
1142 \item
1143 when one of the ordinates is 0, the resulting ordinate is equal to the
1144 other ordinate
1145 \end{itemize}
1146
1147 \subsection*{Fundamental theorem of calculus}
1148
1149 If \(f\) is continuous on \([a, b]\), then
1150
1151 \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1152 \hfill where \(F = \int f \> dx\)
1153
1154 \subsection*{Differential equations}
1155
1156 \noindent\textbf{Order} - highest power inside derivative\\
1157 \textbf{Degree} - highest power of highest derivative\\
1158 e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1159
1160 \subsubsection*{Verifying solutions}
1161
1162 Start with \(y=\dots\), and differentiate. Substitute into original
1163 equation.
1164
1165 \subsubsection*{Function of the dependent
1166 variable}
1167
1168 If \({\frac{dy}{dx}}=g(y)\), then
1169 \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1170 \(e^c\) as \(A\).
1171
1172
1173
1174 \subsubsection*{Mixing problems}
1175
1176 \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1177
1178 \subsubsection*{Separation of variables}
1179
1180 If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1181
1182 \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1183
1184 \subsubsection*{Euler's method for solving DEs}
1185
1186 \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1187
1188 \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1189
1190
1191 \section{Kinematics \& Mechanics}
1192
1193 \subsection*{Constant acceleration}
1194
1195 \begin{itemize}
1196 \item \textbf{Position} - relative to origin
1197 \item \textbf{Displacement} - relative to starting point
1198 \end{itemize}
1199
1200 \subsubsection*{Velocity-time graphs}
1201
1202 \begin{itemize}
1203 \item Displacement: \textit{signed} area between graph and \(t\) axis
1204 \item Distance travelled: \textit{total} area between graph and \(t\) axis
1205 \end{itemize}
1206
1207 \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1208
1209 \begin{center}
1210 \renewcommand{\arraystretch}{1}
1211 \begin{tabular}{ l r }
1212 \hline & no \\ \hline
1213 \(v=u+at\) & \(x\) \\
1214 \(v^2 = u^2+2as\) & \(t\) \\
1215 \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1216 \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1217 \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1218 \end{tabular}
1219 \end{center}
1220
1221 \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1222 \begin{align*}
1223 \text{speed} &= |{\text{velocity}}| \\
1224 &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1225 \end{align*}
1226
1227 \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1228 \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
1229
1230 \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1231 \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1232
1233 \subsection*{Vector functions}
1234
1235 \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1236
1237 \begin{itemize}
1238 \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1239 \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1240 \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1241 \end{itemize}
1242
1243 \subsection*{Vector calculus}
1244
1245 \subsubsection*{Derivative}
1246
1247 Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1248 \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1249
1250 \subfile{dynamics}
1251 \subfile{statistics}
1252 \end{multicols}
1253\end{document}