f02a4d1461d569c681a9c8ef49fae7b16156f942
   1\setstretch{1.3}
   2\pagenumbering{gobble}
   3
   4\hypertarget{inverse-functions}{%
   5\section{Inverse functions}\label{inverse-functions}}
   6
   7\hypertarget{functions}{%
   8\subsection{Functions}\label{functions}}
   9
  10\begin{itemize}
  11\tightlist
  12\item
  13  vertical line test
  14\item
  15  each \(x\) value produces only one \(y\) value
  16\end{itemize}
  17
  18\hypertarget{one-to-one-functions}{%
  19\subsection{One to one functions}\label{one-to-one-functions}}
  20
  21\begin{itemize}
  22\tightlist
  23\item
  24  \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
  25  \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
  26  \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
  27  \(x^3\) is)
  28\item
  29  horizontal line test
  30\item
  31  if not one to one, it is many to one
  32\end{itemize}
  33
  34\hypertarget{deriving-f-1}{%
  35\subsection{\texorpdfstring{Deriving
  36\(f^{-1}\)}{Deriving f\^{}\{-1\}}}\label{deriving-f-1}}
  37
  38\begin{itemize}
  39\tightlist
  40\item
  41  if \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
  42\item
  43  reflection across \(y-x\)
  44\item
  45  \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1}, \quad \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
  46\item
  47  inverse \(\ne\) inverse \emph{function} (i.e.~inverse must pass
  48  vertical line test)\\
  49  \(\implies f^{-1}(x)\) exists \(\iff f(x)\) is one to one
  50\item
  51  \(f^{-1}(x)=f(x)\) intersections may lie on line \(y=x\)
  52\end{itemize}
  53
  54\hypertarget{requirements-for-showing-working-for-f-1}{%
  55\subsubsection{\texorpdfstring{Requirements for showing working for
  56\(f^{-1}\)}{Requirements for showing working for f\^{}\{-1\}}}\label{requirements-for-showing-working-for-f-1}}
  57
  58\begin{enumerate}
  59\def\labelenumi{\arabic{enumi}.}
  60\tightlist
  61\item
  62  start with \emph{``let \(y=f(x)\)''}
  63\item
  64  must state \emph{``take inverse''} for line where \(y\) and \(x\) are
  65  swapped
  66\item
  67  do all working in terms of \(y=\dots\)
  68\item
  69  for square root, state \(\pm\) solutions then show restricted
  70\item
  71  for inverse \emph{function}, state in function notation
  72\end{enumerate}