f04ab637a29d3c44f0d6953c8452833b2f0ca23b
1\documentclass[a4paper]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{multicol}
4\usepackage{multirow}
5\usepackage{amsmath}
6\usepackage{amssymb}
7\usepackage{harpoon}
8\usepackage{tabularx}
9\usepackage{makecell}
10\usepackage[dvipsnames, table]{xcolor}
11\usepackage{blindtext}
12\usepackage{graphicx}
13\usepackage{wrapfig}
14\usepackage{tikz}
15\usepackage{tkz-fct}
16\usepackage{tikz-3dplot}
17\usepackage{pgfplots}
18\usetikzlibrary{calc}
19\usetikzlibrary{angles}
20\usetikzlibrary{datavisualization.formats.functions}
21\usetikzlibrary{decorations.markings}
22\usepgflibrary{arrows.meta}
23\usepackage{fancyhdr}
24\pagestyle{fancy}
25\fancyhead[LO,LE]{Year 12 Specialist}
26\fancyhead[CO,CE]{Andrew Lorimer}
27
28\usepackage{mathtools}
29\usepackage{xcolor} % used only to show the phantomed stuff
30\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
31\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
32\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
33\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
34\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
35\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
36\definecolor{cas}{HTML}{e6f0fe}
37\linespread{1.5}
38\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
39\newcommand{\tg}{\mathop{\mathrm{tg}}}
40\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
41\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
42\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
43
44
45 \pgfplotsset{every axis/.append style={
46 axis x line=middle, % put the x axis in the middle
47 axis y line=middle, % put the y axis in the middle
48 axis line style={->}, % arrows on the axis
49 xlabel={$x$}, % default put x on x-axis
50 ylabel={$y$}, % default put y on y-axis
51 }}
52\begin{document}
53
54\begin{multicols}{2}
55
56 \section{Complex numbers}
57
58 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
59
60 \begin{align*}
61 \text{Cartesian form: } & a+bi\\
62 \text{Polar form: } & r\operatorname{cis}\theta
63 \end{align*}
64
65 \subsection*{Operations}
66
67 \definecolor{shade1}{HTML}{ffffff}
68 \definecolor{shade2}{HTML}{e6f2ff}
69 \definecolor{shade3}{HTML}{cce2ff}
70 \begin{tabularx}{\columnwidth}{r|X|X}
71 & \textbf{Cartesian} & \textbf{Polar} \\
72 \hline
73 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
74 \hline
75 \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
76 \cline{1-1}\cline{3-3}
77 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
78 \hline
79 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
80 \hline
81 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
82 \end{tabularx}
83
84 \subsubsection*{Scalar multiplication in polar form}
85
86 For \(k \in \mathbb{R}^+\):
87 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
88
89 \noindent For \(k \in \mathbb{R}^-\):
90 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
91
92 \subsection*{Conjugate}
93
94 \begin{align*}
95 \overline{z} &= a \mp bi\\
96 &= r \operatorname{cis}(-\theta)
97 \end{align*}
98
99 \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
100
101 \subsubsection*{Properties}
102
103 \begin{align*}
104 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
105 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
106 \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
107 z\overline{z} &= (a+bi)(a-bi)\\
108 &= a^2 + b^2\\
109 &= |z|^2
110 \end{align*}
111
112 \subsection*{Modulus}
113
114 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
115
116 \subsubsection*{Properties}
117
118 \begin{align*}
119 |z_1z_2|&=|z_1||z_2|\\
120 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
121 |z_1+z_2|&\le|z_1|+|z_2|
122 \end{align*}
123
124 \subsection*{Multiplicative inverse}
125
126 \begin{align*}
127 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
128 &=\frac{\overline{z}}{|z|^2}a\\
129 &=r \operatorname{cis}(-\theta)
130 \end{align*}
131
132 \subsection*{Dividing over \(\mathbb{C}\)}
133
134 \begin{align*}
135 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
136 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
137 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
138 & \qquad \text{(rationalise denominator)}
139 \end{align*}
140
141 \subsection*{Polar form}
142
143 \begin{align*}
144 z&=r\operatorname{cis}\theta\\
145 &=r(\cos \theta + i \sin \theta)
146 \end{align*}
147
148 \begin{itemize}
149 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
150 \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
151 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
152 \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
153 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
154 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
155 \end{itemize}
156
157 \subsection*{de Moivres' theorem}
158
159 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
160
161 \subsection*{Complex polynomials}
162
163 Include \(\pm\) for all solutions, incl. imaginary
164
165 \begin{tabularx}{\columnwidth}{ R{0.55} X }
166 \hline
167 Sum of squares & \(\begin{aligned}
168 z^2 + a^2 &= z^2-(ai)^2\\
169 &= (z+ai)(z-ai) \end{aligned}\) \\
170 \hline
171 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
172 \hline
173 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
174 \hline
175 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
176 \hline
177 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
178 \hline
179 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
180 \hline
181 \end{tabularx}
182
183 \subsection*{\(n\)th roots}
184
185 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
186
187 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
188
189 \begin{itemize}
190
191 \item{Same modulus for all solutions}
192 \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
193 \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
194 \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
195 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
196 \end{itemize}
197
198 \noindent For \(0=az^2+bz+c\), use quadratic formula:
199
200 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
201
202 \subsection*{Fundamental theorem of algebra}
203
204 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
205
206 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
207 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
208
209 \subsection*{Argand planes}
210
211 \begin{center}\begin{tikzpicture}[scale=2]
212 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
213 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
214 \coordinate (P) at (1,1);
215 \coordinate (a) at (1,0);
216 \coordinate (b) at (0,1);
217 \coordinate (O) at (0,0);
218 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
219 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
220 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
221 \begin{scope}
222 \path[clip] (O) -- (P) -- (a);
223 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
224 \node at ($(O)+(20:3mm)$) {$\theta$};
225 \end{scope}
226 \filldraw (P) circle (0.5pt);
227 \end{tikzpicture}\end{center}
228
229 \begin{itemize}
230 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
231 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
232 \end{itemize}
233
234 \subsection*{Sketching complex graphs}
235
236 \subsubsection*{Linear}
237
238 \begin{itemize}
239 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
240 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
241 \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
242 \end{itemize}
243
244 \subsubsection*{Circles}
245
246 \begin{itemize}
247 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
248 \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
249 \end{itemize}
250
251 \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
252
253 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
254 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
255 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
256 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
257 \draw [->, thick, blue] (0,0) -- (1,1);
258 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
259 \begin{scope}
260 \path[clip] (0,0) -- (1,1) -- (1,0);
261 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
262 \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
263 \end{scope}
264 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
265 \node [blue, mydot] {};
266 \end{tikzpicture}\end{center}
267
268 \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
269
270 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
271 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
272 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
273 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
274 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
275 \begin{scope}
276 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
277 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
278 \end{scope}
279 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
280 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
281 \node [brown, mydot] at (-0.25,0) {};
282 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
283 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
284 \node [below, font=\footnotesize] at (1,0) {\(1\)};
285 \end{tikzpicture}\end{center}
286
287 \section{Vectors}
288 \begin{center}\begin{tikzpicture}
289 \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)};
290 \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
291 \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
292 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
293 \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
294 \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
295 \end{scope}
296 \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
297 \end{tikzpicture}\end{center}
298 \subsection*{Column notation}
299
300 \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
301 \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
302
303 \subsection*{Scalar multiplication}
304
305 \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
306
307 \noindent For \(k \in \mathbb{R}^-\), direction is reversed
308
309 \subsection*{Vector addition}
310 \begin{center}\begin{tikzpicture}[scale=1]
311 \coordinate (A) at (0,0);
312 \coordinate (B) at (2,2);
313 \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
314 \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
315 \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
316 \end{tikzpicture}\end{center}
317
318 \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
319
320 \begin{itemize}
321 \item Draw each vector head to tail then join lines
322 \item Addition is commutative (parallelogram)
323 \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
324 \end{itemize}
325
326 \subsection*{Magnitude}
327
328 \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
329
330 \subsection*{Parallel vectors}
331
332 \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
333
334 For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
335 \[\boldsymbol{a \cdot b}=\begin{cases}
336 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
337 -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
338 \end{cases}\]
339 %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
340 %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
341
342 \subsection*{Perpendicular vectors}
343
344 \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
345
346 \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
347 \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
348
349 \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
350
351
352 \begin{center}\begin{tikzpicture}[scale=2]
353 \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
354 \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
355 \begin{scope}
356 \path[clip] (1,0.5) -- (1,0) -- (0,0);
357 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
358 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
359 \end{scope}
360 \end{tikzpicture}\end{center}
361 \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
362 \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
363
364 \subsubsection*{Properties}
365
366 \begin{enumerate}
367 \item
368 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
369 \item
370 \(\boldsymbol{a \cdot 0}=0\)
371 \item
372 \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
373 \item
374 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
375 \item
376 \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
377 \item
378 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
379 \end{enumerate}
380
381 \subsection*{Angle between vectors}
382
383 \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
384
385 \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
386
387 (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
388
389 \subsection*{Angle between vector and axis}
390
391 \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
392 which makes angles \(\alpha, \beta, \gamma\) with positive side of
393 \(x, y, z\) axes:
394 \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
395
396 \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
397 between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
398 \(x\)-axis
399
400 \subsection*{Projections \& resolutes}
401
402 \begin{tikzpicture}[scale=3]
403 \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
404 \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
405 \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
406 \begin{scope}
407 \path[clip] (1,0.5) -- (1,0) -- (0,0);
408 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
409 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
410 \end{scope}
411 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
412 \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
413 \end{scope}
414 \draw (0,0) coordinate (O)
415 (1,0) coordinate (A)
416 (1,0.5) coordinate (B)
417 pic [draw,red,angle radius=2mm] {right angle = O--A--B};
418 \end{tikzpicture}
419
420 \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
421
422 \begin{align*}
423 \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
424 & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
425 & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
426 \end{align*}
427
428 \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
429 \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
430
431 \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
432 \begin{align*}
433 s &= |\boldsymbol{u}|\\
434 &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
435 &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
436 &= |\boldsymbol{a}| \cos \theta
437 \end{align*}
438
439 \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
440
441 \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
442
443
444 \subsection*{Vector proofs}
445
446 \textbf{Concurrent:} intersection of \(\ge\) 3 lines
447
448 \begin{tikzpicture}
449 \draw [blue] (0,0) -- (1,1);
450 \draw [red] (1,0) -- (0,1);
451 \draw [brown] (0.4,0) -- (0.6,1);
452 \filldraw (0.5,0.5) circle (2pt);
453 \end{tikzpicture}
454
455 \subsubsection*{Collinear points}
456
457 \(\ge\) 3 points lie on the same line
458
459 \begin{tikzpicture}
460 \draw [purple] (0,0) -- (4,1);
461 \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
462 \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
463 \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
464 \coordinate (O) at (2.8,-0.2);
465 \node at (O) [below] {\(O\)};
466 \begin{scope}[->, orange, thick]
467 \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
468 \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
469 \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
470 \end{scope}
471 \end{tikzpicture}
472
473 \begin{align*}
474 \text{e.g. Prove that}\\
475 \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
476 \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
477 &= \overrightharp{OA} + m\overrightharp{AB}\\
478 &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
479 &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
480 &=(1-m)\boldsymbol{a}+m{b}
481 \end{align*}
482 \begin{align*}
483 \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
484 \text{where } \lambda + \mu &= 1\\
485 \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
486 \end{align*}
487
488
489 \subsubsection*{Parallelograms}
490
491 \begin{center}\begin{tikzpicture}
492 \coordinate (O) at (0,0) node [below left] {\(O\)};
493 \coordinate (A) at (4,0);
494 \coordinate (B) at (6,2);
495 \coordinate (C) at (2,2);
496 \coordinate (D) at (6,0);
497
498 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
499 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
500 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
501 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
502
503 \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
504 \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
505 \begin{scope}
506 \path[clip] (C) -- (A) -- (O);
507 \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
508 \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
509 \end{scope}
510 \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
511 \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
512 \end{tikzpicture}\end{center}
513
514 \begin{itemize}
515 \item
516 Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
517 \item
518 If diagonals are equal length, it is a rectangle
519 \item
520 \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
521 \item
522 Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
523 \end{itemize}
524
525 \subsubsection*{Useful vector properties}
526
527 \begin{itemize}
528 \item
529 \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
530 \(k \in \mathbb{R} \setminus \{0\}\)
531 \item
532 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
533 least one point in common, then they lie on the same straight line
534 \item
535 \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
536 \item
537 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
538 \end{itemize}
539
540 \subsection*{Linear dependence}
541
542 \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
543 \begin{align*}
544 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
545 \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
546 \end{align*}
547
548 \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
549 independent if no vector in the set is expressible as a linear
550 combination of other vectors in set, or if they are parallel.
551
552 \subsection*{Three-dimensional vectors}
553
554 Right-hand rule for axes: \(z\) is up or out of page.
555
556 \tdplotsetmaincoords{60}{120}
557 \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick},
558 vector/.style={-stealth,red,very thick},
559 vector guide/.style={dashed,gray,thick}]
560
561 %standard tikz coordinate definition using x, y, z coords
562 \coordinate (O) at (0,0,0);
563
564 %tikz-3dplot coordinate definition using x, y, z coords
565
566 \pgfmathsetmacro{\ax}{1}
567 \pgfmathsetmacro{\ay}{1}
568 \pgfmathsetmacro{\az}{1}
569
570 \coordinate (P) at (\ax,\ay,\az);
571
572 %draw axes
573 \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
574 \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
575 \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
576
577 %draw a vector from O to P
578 \draw[vector] (O) -- (P);
579
580 %draw guide lines to components
581 \draw[vector guide] (O) -- (\ax,\ay,0);
582 \draw[vector guide] (\ax,\ay,0) -- (P);
583 \draw[vector guide] (P) -- (0,0,\az);
584 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
585 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
586 \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
587 \node[tdplot_main_coords,above right]
588 at (\ax,\ay,\az){(\ax, \ay, \az)};
589 \end{tikzpicture}\end{center}
590
591 \subsection*{Parametric vectors}
592
593 Parametric equation of line through point \((x_0, y_0, z_0)\) and
594 parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
595
596 \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
597
598 \section{Circular functions}
599
600 \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
601
602 \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
603 \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
604
605 \subsection*{Reciprocal functions}
606
607 \subsubsection*{Cosecant}
608
609 \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
610
611 \begin{itemize}
612 \item
613 \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
614 \item
615 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
616 \item
617 \textbf{Turning points} at
618 \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
619 \item
620 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
621 \end{itemize}
622
623 \subsubsection*{Secant}
624
625\begin{tikzpicture}
626 \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
627% \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
628 \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
629 \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
630 \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
631 \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
632 \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
633 \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
634\end{axis}
635 \node [black] at (7,3.5) {\(\cos x\)};
636\end{tikzpicture}
637
638 \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
639
640 \begin{itemize}
641
642 \item
643 \textbf{Domain}
644 \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
645 \item
646 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
647 \item
648 \textbf{Turning points} at
649 \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
650 \item
651 \textbf{Asymptotes} at
652 \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
653 \end{itemize}
654
655 \subsubsection*{Cotangent}
656
657\begin{tikzpicture}
658 \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
659 \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
660\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
661\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
662\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
663\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
664 \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
665 \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
666 \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
667 \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
668 \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
669\end{axis}
670\end{tikzpicture}
671
672 \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
673
674 \begin{itemize}
675
676 \item
677 \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
678 \item
679 \textbf{Range} \(= \mathbb{R}\)
680 \item
681 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
682 \end{itemize}
683
684 \subsubsection*{Symmetry properties}
685
686 \[\begin{split}
687 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
688 \operatorname{sec} (-x) & = \operatorname{sec} x \\
689 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
690 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
691 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
692 \operatorname{cot} (-x) & = - \operatorname{cot} x
693 \end{split}\]
694
695 \subsubsection*{Complementary properties}
696
697 \[\begin{split}
698 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
699 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
700 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
701 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
702 \end{split}\]
703
704 \subsubsection*{Pythagorean identities}
705
706 \[\begin{split}
707 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
708 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
709 \end{split}\]
710
711 \subsection*{Compound angle formulas}
712
713 \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
714 \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
715 \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
716
717 \subsection*{Double angle formulas}
718
719 \[\begin{split}
720 \cos 2x &= \cos^2 x - \sin^2 x \\
721 & = 1 - 2\sin^2 x \\
722 & = 2 \cos^2 x -1
723 \end{split}\]
724
725 \[\sin 2x = 2 \sin x \cos x\]
726
727 \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
728
729 \subsection*{Inverse circular functions}
730
731 \begin{tikzpicture}
732 \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
733 \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
734 \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
735 \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
736 \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
737 \addplot[mark=*, blue] coordinates {(1,0)};
738 \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
739 \end{axis}
740 \end{tikzpicture}\\
741
742 Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
743
744 \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
745 \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
746
747 \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
748 \hfill where \(\cos y = x, \> y \in [0, \pi]\)
749
750 \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
751 \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
752
753 \begin{tikzpicture}
754 \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
755 \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
756 \addplot[->, gray, dotted, thick, domain=-35:35] {1.5708};
757 \addplot[->, gray, dotted, thick, domain=-35:35] {-1.5708};
758 \end{axis}
759 \end{tikzpicture}
760\columnbreak
761 \section{Differential calculus}
762
763 \subsection*{Limits}
764
765 \[\lim_{x \rightarrow a}f(x)\]
766 \(L^-,\quad L^+\) \qquad limit from below/above\\
767 \(\lim_{x \to a} f(x)\) \quad limit of a point\\
768
769 \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
770 e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
771
772 \subsubsection*{Limit theorems}
773
774 \begin{enumerate}
775 \item
776 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
777 \item
778 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
779 \item
780 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
781 \item
782 \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
783 \item
784 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
785 \item
786 \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
787 \end{enumerate}
788
789 \subsection*{Gradients of secants and tangents}
790
791 \textbf{Secant (chord)} - line joining two points on curve\\
792 \textbf{Tangent} - line that intersects curve at one point
793
794 \subsection*{First principles derivative}
795
796 \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
797
798 \subsubsection*{Logarithmic identities}
799
800 \(\log_b (xy)=\log_b x + \log_b y\)\\
801 \(\log_b x^n = n \log_b x\)\\
802 \(\log_b y^{x^n} = x^n \log_b y\)
803
804 \subsubsection*{Index identities}
805
806 \(b^{m+n}=b^m \cdot b^n\)\\
807 \((b^m)^n=b^{m \cdot n}\)\\
808 \((b \cdot c)^n = b^n \cdot c^n\)\\
809 \({a^m \div a^n} = {a^{m-n}}\)
810
811 \subsection*{Derivative rules}
812
813 \renewcommand{\arraystretch}{1.4}
814 \begin{tabularx}{\columnwidth}{rX}
815 \hline
816 \(f(x)\) & \(f^\prime(x)\)\\
817 \hline
818 \(\sin x\) & \(\cos x\)\\
819 \(\sin ax\) & \(a\cos ax\)\\
820 \(\cos x\) & \(-\sin x\)\\
821 \(\cos ax\) & \(-a \sin ax\)\\
822 \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
823 \(e^x\) & \(e^x\)\\
824 \(e^{ax}\) & \(ae^{ax}\)\\
825 \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
826 \(\log_e x\) & \(\dfrac{1}{x}\)\\
827 \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
828 \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
829 \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
830 \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
831 \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
832 \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
833 \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\
834 \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\
835 \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\
836 \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
837 \hline
838 \end{tabularx}
839
840 \subsection*{Reciprocal derivatives}
841
842 \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
843
844 \subsection*{Differentiating \(x=f(y)\)}
845 \begin{align*}
846 \text{Find }& \frac{dx}{dy}\\
847 \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
848 \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
849 \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
850 \end{align*}
851
852 \subsection*{Second derivative}
853 \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
854 \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
855
856 \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
857
858 \subsubsection*{Points of Inflection}
859
860 \emph{Stationary point} - i.e.
861 \(f^\prime(x)=0\)\\
862 \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
863 \(f^{\prime\prime} = 0\))
864
865
866 \pgfplotsset{every axis/.append style={
867 axis x line=none, % put the x axis in the middle
868 axis y line=none, % put the y axis in the middle
869 }}
870 \begin{table*}[ht]
871 \centering
872 \begin{tabularx}{\textwidth}{rXXX}
873 \hline
874 \rowcolor{shade2}
875 & \centering\(\dfrac{d^2 y}{dx^2} > 0\) & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
876 \hline
877 \(\dfrac{dy}{dx}>0\) &
878 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-3, xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x))}; \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
879 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=0.1, xmax=4, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))}; \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
880 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-1.5, xmax=1.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
881 \hline
882 \(\dfrac{dy}{dx}<0\) &
883 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {(1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
884 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=0, xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)}; \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
885 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=1.5, xmax=4.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
886 \hline
887 \(\dfrac{dy}{dx}=0\)&
888 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}& \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x))}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
889 \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Stationary inflection point}\\
890 \hline
891 \end{tabularx}
892 \end{table*}
893 \begin{itemize}
894 \item
895 if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
896 \((a, f(a))\) is a local min (curve is concave up)
897 \item
898 if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
899 \((a, f(a))\) is local max (curve is concave down)
900 \item
901 if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
902 inflection
903 \item
904 if also \(f^\prime(a)=0\), then it is a stationary point of inflection
905 \end{itemize}
906
907 \subsection*{Implicit Differentiation}
908
909 \noindent Used for differentiating circles etc.
910
911 If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
912 for all \(x\) and \(y\), then:
913
914 \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
915
916 \noindent \colorbox{cas}{\textbf{On CAS:}}\\
917 Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
918 Returns \(y^\prime= \dots\).
919
920 \subsection*{Integration}
921
922 \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
923
924 \subsection*{Integral laws}
925
926 \renewcommand{\arraystretch}{1.4}
927 \begin{tabularx}{\columnwidth}{rX}
928 \hline
929 \(f(x)\) & \(\int f(x) \cdot dx\) \\
930 \hline
931 \(k\) (constant) & \(kx + c\)\\
932 \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
933 \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
934 \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
935 \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
936 \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
937 \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
938 \(e^k\) & \(e^kx + c\)\\
939 \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
940 \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
941 \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
942 \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
943 \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
944 \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
945 \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
946 \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
947 \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
948 \hline
949 \end{tabularx}
950
951 Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
952
953 \subsection*{Definite integrals}
954
955 \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
956
957 \begin{itemize}
958
959 \item
960 Signed area enclosed by\\
961 \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
962 \item
963 \emph{Integrand} is \(f\).
964 \end{itemize}
965
966 \subsubsection*{Properties}
967
968 \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
969
970 \[\int^a_a f(x) \> dx = 0\]
971
972 \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
973
974 \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
975
976 \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
977
978 \subsection*{Integration by substitution}
979
980 \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
981
982 \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
983 \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
984 \text{let } u&=x+4\\
985 \implies& {\frac{du}{dx}} = 1\\
986 \implies& x = u - 4\\
987 \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
988 &\text{(solve as normal integral)}
989 \end{align*}
990
991 \subsubsection*{Definite integrals by substitution}
992
993 For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
994 \(b\) for \(f(u) \cdot du\).
995
996 \subsubsection*{Trigonometric integration}
997
998 \[\sin^m x \cos^n x \cdot dx\]
999
1000 \paragraph{\textbf{\(m\) is odd:}}
1001 \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1002 \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1003 Substitute \(u=\cos x\)
1004
1005 \paragraph{\textbf{\(n\) is odd:}}
1006 \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1007 \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1008 Substitute \(u=\sin x\)
1009
1010 \paragraph{\textbf{\(m\) and \(n\) are even:}}
1011 use identities...
1012
1013 \begin{itemize}
1014
1015 \item
1016 \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1017 \item
1018 \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1019 \item
1020 \(\sin 2x = 2 \sin x \cos x\)
1021 \end{itemize}
1022
1023 \subsection*{Partial fractions}
1024
1025 \colorbox{cas}{On CAS:}\\
1026 \indent Action \(\rightarrow\) Transformation \(\rightarrow\)
1027 \texttt{expand/combine}\\
1028 \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
1029 Expand \(\rightarrow\) Partial
1030
1031 \subsection*{Graphing integrals on CAS}
1032
1033 \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
1034 \(\int\) (\(\rightarrow\) Definite)\\
1035 Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
1036
1037 \subsection*{Applications of antidifferentiation}
1038
1039 \begin{itemize}
1040
1041 \item
1042 \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1043 stationary points on \(y=F(x)\)
1044 \item
1045 nature of stationary points is determined by sign of \(y=f(x)\) on
1046 either side of its \(x\)-intercepts
1047 \item
1048 if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1049 \(n+1\)
1050 \end{itemize}
1051
1052 To find stationary points of a function, substitute \(x\) value of given
1053 point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1054 original function.
1055
1056 \subsection*{Solids of revolution}
1057
1058 Approximate as sum of infinitesimally-thick cylinders
1059
1060 \subsubsection*{Rotation about \(x\)-axis}
1061
1062 \begin{align*}
1063 V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
1064 &= \pi \int^b_a (f(x))^2 \> dx
1065 \end{align*}
1066
1067 \subsubsection*{Rotation about \(y\)-axis}
1068
1069 \begin{align*}
1070 V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
1071 &= \pi \int^b_a (f(y))^2 \> dy
1072 \end{align*}
1073
1074 \subsubsection*{Regions not bound by \(y=0\)}
1075
1076 \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1077 \hfill where \(f(x) > g(x)\)
1078
1079 \subsection*{Length of a curve}
1080
1081 \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1082
1083 \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1084
1085 \noindent \colorbox{cas}{On CAS:}\\
1086 \indent Evaluate formula,\\
1087 \indent or Interactive \(\rightarrow\) Calculation
1088 \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1089
1090 \subsection*{Rates}
1091
1092 \subsubsection*{Gradient at a point on parametric curve}
1093
1094 \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1095
1096 \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1097
1098 \subsection*{Rational functions}
1099
1100 \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1101
1102 \subsubsection*{Addition of ordinates}
1103
1104 \begin{itemize}
1105
1106 \item
1107 when two graphs have the same ordinate, \(y\)-coordinate is double the
1108 ordinate
1109 \item
1110 when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1111 (\(x\)-intercept)
1112 \item
1113 when one of the ordinates is 0, the resulting ordinate is equal to the
1114 other ordinate
1115 \end{itemize}
1116
1117 \subsection*{Fundamental theorem of calculus}
1118
1119 If \(f\) is continuous on \([a, b]\), then
1120
1121 \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1122 \hfill where \(F = \int f \> dx\)
1123
1124 \subsection*{Differential equations}
1125
1126 \noindent\textbf{Order} - highest power inside derivative\\
1127 \textbf{Degree} - highest power of highest derivative\\
1128 e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1129
1130 \subsubsection*{Verifying solutions}
1131
1132 Start with \(y=\dots\), and differentiate. Substitute into original
1133 equation.
1134
1135 \subsubsection*{Function of the dependent
1136 variable}
1137
1138 If \({\frac{dy}{dx}}=g(y)\), then
1139 \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1140 \(e^c\) as \(A\).
1141
1142
1143
1144 \subsubsection*{Mixing problems}
1145
1146 \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1147
1148 \subsubsection*{Separation of variables}
1149
1150 If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1151
1152 \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1153
1154 \subsubsection*{Euler's method for solving DEs}
1155
1156 \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1157
1158 \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1159
1160
1161 \section{Kinematics \& Mechanics}
1162
1163 \subsection*{Constant acceleration}
1164
1165 \begin{itemize}
1166 \item \textbf{Position} - relative to origin
1167 \item \textbf{Displacement} - relative to starting point
1168 \end{itemize}
1169
1170 \subsubsection*{Velocity-time graphs}
1171
1172 \begin{itemize}
1173 \item Displacement: \textit{signed} area between graph and \(t\) axis
1174 \item Distance travelled: \textit{total} area between graph and \(t\) axis
1175 \end{itemize}
1176
1177 \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1178
1179 \begin{center}
1180 \renewcommand{\arraystretch}{1}
1181 \begin{tabular}{ l r }
1182 \hline & no \\ \hline
1183 \(v=u+at\) & \(x\) \\
1184 \(v^2 = u^2+2as\) & \(t\) \\
1185 \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1186 \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1187 \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1188 \end{tabular}
1189 \end{center}
1190
1191 \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1192 \begin{align*}
1193 \text{speed} &= |{\text{velocity}}| \\
1194 &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1195 \end{align*}
1196
1197 \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1198 \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
1199
1200 \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1201 \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1202
1203 \subsection*{Vector functions}
1204
1205 \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1206
1207 \begin{itemize}
1208 \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1209 \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1210 \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1211 \end{itemize}
1212
1213 \subsection*{Vector calculus}
1214
1215 \subsubsection*{Derivative}
1216
1217 Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1218 \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1219
1220 \end{multicols}
1221\end{document}