f30ed7adc4874089ba307799e81c327921756838
1# Circular functions
2
3## Radians and degrees
4
5$$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$
6
7## Exact values
8
9
10
11## $\sin$ and $\cos$ graphs
12
13$$f(x)=a \sin(bx-c)+d$$
14$$f(x)=a \cos(bx-c)+d$$
15
16where
17$a$ is the $y$-dilation (amplitude)
18$b$ is the $x$-dilation (period)
19$c$ is the $x$-shift (phase)
20$d$ is the $y$-shift (equilibrium position)
21
22Domain is $\mathbb{R}$
23Range is $[-b+c, b+c]$;
24
25Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
26
27**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
28
29## Solving trig equations
30
311. Solve domain for $n\theta$
322. Find solutions for $n\theta$
333. Divide solutions by $n$
34
35$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
36$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
37$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
38$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
39
40### Amplitude
41
42Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
43
44$a=0$ produces straight line
45$a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
46
47### Period
48
49Period $T$ is ${2 \pi}\over b$
50$b=0$ produces straight line
51$b\lt0$ inverts the phase
52
53### Phase
54
55$c$ moves the graph left-right in the $x$ axis.
56If $c=T={{2\pi}\over b}$, the graph has no actual phase shift.
57
58## Symmetry
59
60$$\sin(\theta+{\pi\over 2})=\sin\theta$$
61$$\sin(\theta+\pi)=-\sin\theta$$
62
63$$\cos(\theta+{\pi \over 2})=-\cos\theta$$
64$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$
65
66## Pythagorean identity
67
68$$\cos^2\theta+\sin^2\theta=1$$
69
70## Complementary relationships
71
72$$\sin({\pi \over 2} - \theta)=\cos\theta$$
73$$\cos({\pi \over 2} - \theta)=\sin\theta$$
74
75$$\sin\theta=-\cos(\theta+{\pi \over 2})$$
76$$\cos\theta=\sin(\theta+{\pi \over 2})$$
77
78## $tan$ graph
79
80$$y=a\tan(nx)$$
81
82where
83$a$ is $x$-dilation (period)
84$n$ is $y$-dilation ($\equiv$ amplitude)
85period $T$ is $\pi \over n$
86range is $R$
87roots at $x={k\pi \over n}$
88asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$
89**Asymptotes should always have equations and arrow pointing up**