fb94066fe41f81f2354aa5c6747d75205814d015
1---
2geometry: margin=2cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7classoption: twocolumn
8header-includes: \pagenumbering{gobble}
9---
10
11# Exponential and Index Functions
12
13## Index laws
14
15$a^m \times a^n = a^{m+n}$
16$a^m \div a^n = a^{m-n}4$
17$(a^m)^n = a^{_mn}$
18$(ab)^m = a^m b^m$
19${({a \over b})}^m = {a^m \over b^m}$
20
21## Fractional indices
22
23$^n\sqrt{x}=x^{1/n}$
24
25## Logarithms
26
27$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
28
29## Using logs to solve index eq's
30
31Used for equations without common base exponent
32
33Or change base:
34$$\log_b c = {{\log_a c} \over {\log_a b}}$$
35
36If $a<1, \quad \log_{b} a < 0$ (flip inequality operator)
37
38## Exponential functions
39
40$e^x$ - natural exponential function
41
42
43$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
44
45## Logarithm laws
46
47$\log_a(mn) = \log_am + \log_an$
48$\log_a({m \over n}) = \log_am - \log_an$
49$\log_a(m^p) = p\log_am$
50$\log_a(m^{-1}) = -\log_am$
51$\log_a1 = 0$ and $\log_aa = 1$
52
53
54## Inverse functions
55
56Inverse of $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x$ is $f^{-1}: \mathbb{R}^+ \rightarrow \mathbb{R}, f^{-1}=log_ax$
57
58## Euler's number
59
60$$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$
61
62## Literal equations
63
64_Literal equation_ - no numerical solutions
65
66## Exponential and logarithmic modelling
67
68$$A = A_0 e^{kt}$$
69
70where
71$A_0$ is initial value
72$t$ is time taken
73$k$ is a constant
74For continuous growth, $k > 0$
75For continuous decay, $k < 0$
76m
77## Graphing expomnential functions
78
79$$f(x)=Aa^{k(x-b)} + c, \quad \vert a > 1$$
80
81- **$y$-intercept** at $(0, {{1+c} \over {a^b}})$
82- **horizontal asymptote** at $y=c$
83- **domain** is $\mathbb{R}$
84- **range** is $(c, \infty)$
85- dilation of factor $A$ from $x$-axis
86- dilation of factor $1 \over k$ from $y$-axis
87
88