Exponential and Index Functions

Index laws

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}4$$

$$(a^{m})^{n} = a^{m}^{n}$$

$$(ab)^{m} = a^{m}b^{m}$$

$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$
(1)

Fractional indices

$$^{n}\sqrt{x} = x^{1/n}$$

Logarithms

$$\log_b(x) = n$$
 where $b^n = x$

Using logs to solve index eq's

Used for equations without common base exponent Or change base:

$$\log_b c = \frac{\log_a c}{\log_a b}$$

If a < 1, $\log_b a < 0$ (flip inequality operator)

Exponential functions

 $e^{\boldsymbol{x}}$ - natural exponential function

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Logarithm laws

$$\log_a(mn) = \log_a m + \log_a n$$

$$\log_a(\frac{m}{n}) = \log_a m - \log_a$$

$$\log_a(m^p) = p \log_a m$$

$$\log_a(m^{-1}) = -\log_a m$$

$$\log_a 1 = 0 \text{ and } \log_a a = 1$$

Inverse functions

For $f : \mathbb{R} \to \mathbb{R}$, $f(x) = a^x$, inverse is:

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}, f^{-1} = \log_a x$$

Euler's number

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Exponential and logarithmic modelling

$$A = A_0 e^{kt}$$

where

A₀ is initial value
t is time taken

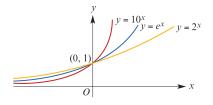
(1) k is a constant

For continuous growth, k > 0
For continuous decay, k < 0

Graphing exponential functions

 $f(x) = Aa^{k(x-b)} + c, \quad |a > 1$

- y-intercept at $(0, A \cdot a^{-kb} + c)$ as $x \to \infty$
- horizontal asymptote at y = c
- domain is \mathbb{R}
- range is (c, ∞)
- dilation of factor A from x-axis
- dilation of factor $\frac{1}{k}$ from *y*-axis



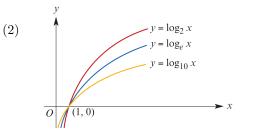
Graphing logarithmic functions

 $\log_e x$ is the inverse of e^x (reflection across y = x)

$$f(x) = A \log_a k(x-b) + c$$

where

- domain is (b,∞)
- range is \mathbb{R}
- vertical asymptote at x = b
- *y*-intercept exists if b < 0
- dilation of factor A from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis



Finding equations

