Methods - Calculus

Average rate of change

$$
m \text { of } x \in[a, b]=\frac{f(b)-f(a)}{b-a}=\frac{d y}{d x}
$$

On CAS: Action \rightarrow Calculation \rightarrow Diff $\rightarrow(f(x) \mid y)=\ldots$

Instantaneous rate of change

Secant - line passing through two points on a curve
Chord - line segment joining two points on a curve

Limit theorems

1. For constant function $f(x)=k, \lim _{x \rightarrow a} f(x)=k$
2. $\lim _{x \rightarrow a}(f(x) \pm g(x))=F \pm G$
3. $\lim _{x \rightarrow a}(f(x) \times g(x))=F \times G$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}, G \neq 0$

A function is continuous if $L^{-}=L^{+}=f(x)$ for all values of x.

First principles derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Not differentiable at:

- discontinuous points
- sharp point/cusp
- vertical tangents (∞ gradient)

Tangents \& gradients

Tangent line - defined by $y=m x+c$ where $m=\frac{d y}{d x}$
Normal line $-\perp$ tangent $\left(m_{t a n} \cdot m_{\text {norm }}=-1\right)$
Secant $=\frac{f(x+h)-f(x)}{h}$

Strictly increasing

- strictly increasing where $f\left(x_{2}\right)>f\left(x_{1}\right)$ and $x_{2}>x_{1}$
- strictly decreasing where $f\left(x_{2}\right)<f\left(x_{1}\right)$ and $x_{2}>x_{1}$
- If $f^{\prime}(x)>0$ for all x in interval, then f is strictly increasing
- If $f^{\prime}(x)<0$ for all x in interval, then f is strictly decreasing
- Endpoints are included, even where gradient $=0$

Solving on CAS

In main: type function. Interactive \rightarrow Calculation \rightarrow Line \rightarrow (Normal | Tan line)
In graph: define function. Analysis \rightarrow Sketch \rightarrow (Normal \mid
Tan line). Type x value to solve for a point. Return to show equation for line.

Stationary points

Stationary where $m=0$.
Find derivative, solve for $\frac{d y}{d x}=0$

Local maximum at point A

- $f^{\prime}(x)>0$ left of A
- $f^{\prime}(x)<0$ right of A

Local minimum at point B

- $f^{\prime}(x)<0$ left of B
- $f^{\prime}(x)>0$ right of B

Stationary point of inflection at C

Function derivatives

$f(x)$	$f^{\prime}(x)$
$g(x) \pm h(x)$	$g^{\prime}(x) \pm h^{\prime}(x)$
c	0
$\frac{u}{v}$	$\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right) \div v^{2}$
$u v$	$u \frac{d v}{d x}+v \frac{d u}{d x}$
$f \circ g$	$\frac{d y}{d u} \cdot \frac{d u}{d x}$
$\sin a x$	$a \cos a x$
$\sin (f(x))$	$f^{\prime}(x) \cdot \cos (f(x))$
$\cos a x$	$-a \sin a x$
$\cos (f(x))$	$f^{\prime}(x)(-\sin (f(x)))$
$e^{a x}$	$a e^{a x}$
$\log _{e} a x$	$\frac{1}{x}$
$\log _{e} f(x)$	$\frac{f^{\prime}(x)}{f(x)}$

