Inverse functions

Functions

- vertical line test
- each x value produces only one y value

One to one functions

- f(x) is one to one if $f(a) \neq f(b)$ if $a, b \in \text{dom}(f)$ and $a \neq b$
- i.e. unique y for each x ($\sin x$ is not 1:1, x^3 is)
- horizontal line test
- if not one to one, it is many to one

Inverse functions f^{-1}

- if f(g(x)) = x, then g is the inverse of f
- reflection across y x
- ran $f = \text{dom } f^{-1}$, dom $f = \text{ran } f^{-1}$
- inverse \neq inverse function (i.e. inverse must pass vertical line test)
- $\implies f^{-1}(x)$ exists $\iff f(x)$ is one to one
- $f^{-1}(x) = f(x)$ intersections may lie on line y = x

Requirements for showing working for f^{-1} :

- start with "let y = f(x)"
- must state "take inverse" for line where y and x are swapped
- do all working in terms of $y = \dots$
- for square root, state \pm solutions then show restricted
- for inverse function, state in function notation