Polynomials

Quadratics

Quadratics	$x^{2}+b x+c=(x+m)(x+n)$
where $m n=c, m+n=b$	
Difference of	$a^{2}-b^{2}=(a-b)(a+b)$
squares	
Perfect squares	$a^{2} \pm 2 a b+b^{2}=\left(a \pm b^{2}\right)$
Completing the	$x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}$
square	$a x^{2}+b x+c=a\left(x-\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a}$
Quadratic	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where $\Delta=b^{2}-4 a c$
formula	

Cubics

Difference of cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Sum of cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Perfect cubes: $a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}=(a \pm b)^{3}$

Linear and quadratic graphs

Forms of linear equations

$y=m x+c$ where m is gradient and c is y-intercept $\frac{x}{a}+\frac{y}{b}=1$ where m is gradient and $\left(x_{1}, y_{1}\right)$ lies on the graph
$y-y_{1}=m\left(x-x_{1}\right)$ where $(a, 0)$ and $(0, b)$ are x - and y intercepts

Line properties

Parallel lines: $m_{1}=m_{2}$
Perpendicular lines: $m_{1} \times m_{2}=-1$
Distance: $\overrightarrow{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Cubic graphs

$$
y=a(b x-h)^{3}+c
$$

- $m=0$ at stationary point of inflection (i.e. $\left.\left(\frac{h}{b}, k\right)\right)$
- in form $y=(x-a)^{2}(x-b)$, local max at $x=a$, local \min at $x=b$
- in form $y=a(x-b)(x-c)(x-d): x$-intercepts at b, c, d
- in form $y=a(x-b)^{2}(x-c)$, touches x-axis at b, intercept at c

Quartic graphs

Forms of quadratic equations

$y=a x^{4}$
$y=a(x-b)(x-c)(x-d)(x-e)$
$y=a x^{4}+c d^{2}(c \geq 0)$
$y=a x^{2}(x-b)(x-c)$
$y=a(x-b)^{2}(x-c)^{2}$
$y=a(x-b)(x-c)^{3}$

Literal equations

Equations with multiple pronumerals. Solutions are expressed in terms of pronumerals (parameters)

Simultaneous equations (linear)

- Unique solution - lines intersect at point
- Infinitely many solutions - lines are equal
- No solution - lines are parallel

Solving $\left\{\begin{array}{l}p x+q y=a \\ r x+s y=b\end{array} \quad\right.$ for one, infinite and no solutions
where all coefficients are known except for one, and a, b are known

1. Write as matrices: $\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$
2. Find determinant of first matrix: $\Delta=p s-q r$
3. Let $\Delta=0$ for number of solutions $\neq 1$ or let $\Delta \neq 0$ for one unique solution.
4. Solve determinant equation to find variable

- - for infinite/no solutions: -

5. Substitute variable into both original equations
6. Rearrange equations so that LHS of each is the same
7. If $\operatorname{RHS}(1)=\operatorname{RHS}(2)$, lines are coincident (infinite solutions)
If $\operatorname{RHS}(1) \neq \operatorname{RHS}(2)$, lines are parallel (no solutions)
Or use Matrix -> det on CAS.

Solving $\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$

- Use elimination
- Generate two new equations with only two variables
- Rearrange \& solve
- Substitute one variable into another equation to find another variable
- etc.

