Transformation

Order of operations: DRT - Dilations, Reflections, Translations
Transforming x^{n} to $a(x-h)^{n}+K$

- $|a|$ is the dilation factor of $|a|$ units parallel to y-axis or from x-axis
- if $a<0$, graph is reflected over x-axis
- k - translation of k units parallel to y-axis or from x-axis
- h - translation of h units parallel to x-axis or from y-axis
- for $(a x)^{n}$, dilation factor is $\frac{1}{a}$ parallel to x-axis or from y-axis
- when $0<|a|<1$, graph becomes closer to axis

Translations

For $y=f(x)$, these processes are equivalent:

- applying the translation $(x, y) \rightarrow(x+h, y+k)$ to the graph of $y=f(x)$
- replacing x with $x-h$ and y with $y-k$ to obtain $y-k=f(x-h)$

Dilations

For the graph of $y=f(x)$, there are two pairs of equivalent processes:

1. - Dilating from x-axis: $(x, y) \rightarrow(x, b y)$

- Replacing y with $\frac{y}{b}$ to obtain $y=b f(x)$

2. - Dilating from y-axis: $(x, y) \rightarrow(a x, y)$

- Replacing x with $\frac{x}{a}$ to obtain $y=f\left(\frac{x}{a}\right)$

For graph of $y=\frac{1}{x}$, horizontal \& vertical dilations are equivalent (symmetrical). If $y=\frac{a}{x}$, graph is contracted rather than dilated.

Transforming $f(x)$ to $y=A f[n(x+c)]+b$
Applies to exponential, log, trig, power, polynomial functions.
Functions must be written in form $y=A f[n(x+c)]+b$
A - dilation by factor A from x-axis (if $A<0$, reflection across y-axis)
n - dilation by factor $\frac{1}{n}$ from y-axis (if $n<0$, reflection across x-axis)
c - translation from y-axis (x-shift)
b - translation from x-axis (y-shift)

Power functions

Strictly increasing: $f\left(x_{2}\right)>f\left(x_{1}\right)$ where $x_{2}>x_{1}$ (including $x=0$)

Odd and even functions
Even when $f(x)=-f(x)$
Odd when $-f(x)=f(-x)$
Function is even if it can be reflected across y-axis $\Longrightarrow f(x)=f(-x)$
Function $x^{ \pm \frac{p}{q}}$ is odd if q is odd
x^{n} where $n \in \mathbb{Z}^{+}$

x^{n} where $n \in \mathbb{Z}^{-}$

$x^{\frac{1}{n}}$ where $n \in \mathbb{Z}^{+}$

$x^{\frac{-1}{n}}$ where $n \in \mathbb{Z}^{+}$
Mostly only on CAS.
We can write $x^{\frac{-1}{n}}=\frac{1}{x^{\frac{1}{n}}}=\frac{1}{n \sqrt{x}} \mathrm{n}$.
Domain is: $\begin{cases}\mathbb{R}\{0\} & \text { if } n \text { is odd } \\ \mathbb{R}^{+} & \text {if } n \text { is even }\end{cases}$
If n is odd, it is an odd function.
$x^{\frac{p}{q}}$ where $p, q \in \mathbb{Z}^{+}$

$$
x^{\frac{p}{q}}=\sqrt[q]{x^{p}}
$$

- if $p>q$, the shape of x^{p} is dominant
- if $p<q$, the shape of $x^{\frac{1}{q}}$ is dominant
- points $(0,0)$ and $(1,1)$ will always lie on graph
- Domain is: $\begin{cases}\mathbb{R} & \text { if } q \text { is odd } \\ \mathbb{R}^{+} \cup\{0\} & \text { if } q \text { is even }\end{cases}$

Combinations of functions (piecewise/hybrid)

$$
\text { e.g. } f(x)= \begin{cases}3 \sqrt{x}, & x \leq 0 \\ 2, & 0<x<2 \\ x, & x \geq 2\end{cases}
$$

Open circle - point included
Closed circle - point not included

Sum, difference, product of functions

sum	$f+g$	domain $=\operatorname{dom}(f) \cap \operatorname{dom}(g)$
difference	$f-g$ or $g-f$	domain $=\operatorname{dom}(f) \cap \operatorname{dom}(g)$
product	$f \times g$	domain $=\operatorname{dom}(f) \cap \operatorname{dom}(g)$

Addition of linear piecewise graphs - add y-values at key points
Product functions:

- product will equal 0 if one of the functions is equal to 0
- turning point on one function does not equate to turning point on product

Matrix transformations

Find new point $\left(x^{\prime}, y^{\prime}\right)$. Substitute these into original equation to find image with original variables (x, y).

Composite functions

$(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$

