Exponential and Index Functions

Index laws

$$
\begin{align*}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} 4 \\
\left(a^{m}\right)^{n} & =a^{m} \tag{1}\\
(a b)^{m} & =a^{m} b^{m} \\
\left(\frac{a}{b}\right)^{m} & =\frac{a^{m}}{b^{m}}
\end{align*}
$$

Fractional indices

$$
\sqrt[n]{x}=x^{1 / n}
$$

Logarithms

$$
\log _{b}(x)=n \quad \text { where } \quad b^{n}=x
$$

Using logs to solve index eq's

Used for equations without common base exponent Or change base:

$$
\log _{b} c=\frac{\log _{a} c}{\log _{a} b}
$$

If $a<1, \quad \log _{b} a<0$ (flip inequality operator)

Exponential functions

e^{x} - natural exponential function

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Logarithm laws

$$
\begin{aligned}
\log _{a}(m n) & =\log _{a} m+\log _{a} n \\
\log _{a}\left(\frac{m}{n}\right) & =\log _{a} m-\log _{a} \\
\log _{a}\left(m^{p}\right) & =p \log _{a} m \\
\log _{a}\left(m^{-1}\right) & =-\log _{a} m \\
\log _{a} 1=0 & \text { and } \log _{a} a=1
\end{aligned}
$$

Inverse functions

For $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^{x}$, inverse is:

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}, f^{-1}=\log _{a} x
$$

Euler's number

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Literal equations

Literal equation - no numerical solutions

Exponential and logarithmic modelling

$$
A=A_{0} e^{k t}
$$

where
A_{0} is initial value t is time taken k is a constant
For continuous growth, $k>0$
For continuous decay, $k<0$

Graphing exponential functions

$$
f(x)=A a^{k(x-b)}+c, \quad \mid a>1
$$

- y-intercept at $\left(0, A \cdot a^{-k b}+c\right)$ as $x \rightarrow \infty$
- horizontal asymptote at $y=c$
- domain is \mathbb{R}
- range is (c, ∞)
- dilation of factor A from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis

Graphing logarithmic functions

$\log _{e} x$ is the inverse of e^{x} (reflection across $y=x$)

$$
f(x)=A \log _{a} k(x-b)+c
$$

where

- domain is (b, ∞)
- range is \mathbb{R}
- vertical asymptote at $x=b$
- y-intercept exists if $b<0$
- dilation of factor A from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis

Finding equations
Solve simultaneous equations on CAS: $\left\{\begin{array}{l}f(3)=9 \\ g(3)=a\end{array} \|_{a, b}\right.$

