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Complex & Imaginary Numbers

Imaginary numbers

i2 = −1 ∴ i =
√

−1

Simplifying negative surds
√

−2 =
√

−1 × 2

=
√

2i

Complex numbers

C = {a + bi : a, b ∈ R}

General form: z = a + bi
Re(z) = a, Im(z) = b

Addition

If z1 = a + bi and z2 = c + di, then

z1 + z2 = (a + c) + (b + d)i

Subtraction

If z1 = a + bi and z2 = c + di, then

z1 − z2 = (ac) + (bd)i
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Multiplication by a real constant

If z = a + bi and k ∈ R, then

kz = ka + kbi

Powers of i

• i4n = 1

• i4n+1 = i

• i4n+2 = −1

• i4n+3 = −i

For in, find remainder r when n ÷ 4. Then in = ir.

Multiplying complex expressions

If z1 = a + bi and z2 = c + di, then

z1 × z2 = (ac − bd) + (ad + bc)i

Conjugates

z = a ∓ bi

Properties

• z1 + z2 = z1 + z2

• z1z2 = z1 · z2

• kz = kz, for k ∈ R

• zz == (a + bi)(a − bi) = a2 + b2 = |z|2

• z + z = 2 Re(z)
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Modulus

Distance from origin.

|z| =
√

a2 + b2 ∴ zz = |z|2

Properties

• |z1z2| = |z1||z2|

• | z1
z2

| = |z1|
|z2|

• |z1 + z2| ≤ |z1 + |z2|

Multiplicative inverse

z−1 = 1
z

= a − bi

a2 + B2

= z

|z|2

Dividing complex numbers

z1

z2
= z1 z2

−1 = z1z2

|z2|2
(multiplicative inverse)

In practice, rationalise denominator:

z1

z2
= (a + bi)(c − di)

c2 + d2

Argand planes

• Geometric representation of C

• horizontal = Re(z); vertical = Im(z)

• Multiplication by i results in an anticlockwise rotation of π
2

Complex polynomials

Include ± for all solutions, including imaginary
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Sum of two squares (quadratics)

z2 + a2 = z2 − (ai)2 = (z + ai)(z − ai)

Complete the square to get to this point.

Dividing complex polynomials

P (z) ÷ D(z) gives quotient Q(z) and remainder R(z):

P (z) = D(z)Q(z) + R(z)

Remainder theorem

Let α ∈ C. Remainder of P (z) ÷ (z − α) is P (α)

Factor theorem

If a + bi is a solution to P (z) = 0, then:

• P (a + bi) = 0

• z − (a + bi) is a factor of P (z)

Sum of two cubes

a3 ± b3 = (a ± b)(a2 ∓ ab + b2)

Conjugate root theorem

If a+bi is a solution to P (z) = 0, then the conjugate z = a−bi is also a solution.

Polar form

z = r cis θ

= r(cos θ + i sin θ)
= a + bi

• r = |z| =
√

Re(z)2 + Im(z)2

• θ = arg(z) (on CAS: arg(a+bi))

• principal argument is Arg(z) ∈ (−π, π] (note capital Arg)
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Each complex number has multiple polar representations:
z = r cis θ = r cis(θ + 2nπ) with n ∈ Z revolutions

Conjugate in polar form

(r cis θ)−1 = r cis(−θ)

Reflection of z across horizontal axis.

Multiplication and division in polar form

z1z2 = r1r2 cis(θ1 + θ2)

z1

z2
= r1

r2
cis(θ1 − θ2)

de Moivres’ Theorem

(r cis θ)n = rn cis(nθ) where n ∈ Z

Roots of complex numbers

nth roots of z = r cis θ are

z = r
1
n cis(θ + 2kπ

n
)

Same modulus for all solutions. Arguments are separated by 2π
n

The solutions of zn = a where a ∈ C lie on circle

x2 + y2 = (|a| 1
n )2

Sketching complex graphs

Straight line

• Re(z) = c or Im(z) = c (perpendicular bisector)

• Arg(z) = θ

• |z + a| = |z + bi| where m = a
b
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• |z + a| = |z + b| −→ 2(a − b)x = b2 − a2

Circle

|z − z1|2 = c2|z2 + 2|2 or |z − (a + bi)| = c

Locus

Arg(z) < θ

Vectors

• vector: a directed line segment

• arrow indicates direction

• length indicates magnitude

• column notation:
[
x
y

]
• vectors with equal magnitude and direction are equivalent

Figure 1:

Vector addition

u + v can be represented by drawing each vector head to tail then joining the
lines.
Addition is commutative (parallelogram)

Scalar multiplication

For k ∈ R+, ku has the same direction as u but length is multiplied by a factor
of k.

When multiplied by k < 0, direction is reversed and length is multplied by k.
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Vector subtraction

To find u − v, add −v to u

Parallel vectors

Same or opposite direction

u||v ⇐⇒ u = kv where k ∈ R \ {0}

Position vectors

Vectors may describe a position relative to O.

For a point A, the position vector is

Linear combinations of non-parallel vectors

If two non-zero vectors a and b are not parallel, then:

ma + nb = pa + qb ∴ m = p, n = q

Column vector notation

A vector between points A(x1, y1), B(x2, y2) can be represented as
[
x2 − x1
y2 − y1

]

Component notation

A vector u =
[
x
y

]
can be written as u = xi + yj.

u is the sum of two components xi and yj
Magnitude of vector u = xi + yj is denoted by |u| =

√
x2 + y2

Basic algebra applies:
(xi + yj) + (mi + nj) = (x + m)i + (y + n)j
Two vectors equal if and only if their components are equal.
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Unit vector \hat{\boldsymbol{a}}=1

â = 1
|a|

a

= a · |a|

Scalar/dot product \boldsymbol{a} \cdot \boldsymbol{b}

a · b = a1b1 + a2b2

on CAS: dotP([a b c], [d e f])

Scalar product properties

1. k(a · b) = (ka) · b = a · (kb)

2. a · 0 = 0

3. a · (b + c) = a · b + a · c

4. i · i = j · j = k · k = 1

5. If a · b = 0, a and b are perpendicular

6. a · a = |a|2 = a2

For parallel vectors a and b:

a · b =

{
|a||b| if same direction
−|a||b| if opposite directions

Geometric scalar products

a · b = |a||b| cos θ

where 0 ≤ θ ≤ π

Perpendicular vectors

If a · b = 0, then a ⊥ b (since cos 90 = 0)
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Finding angle between vectors

positive direction

cos θ = a · b

|a||b|
= a1b1 + a2b2

|a||b|

on CAS: angle([a b c], [a b c]) (Action -> Vector -> Angle)

Angle between vector and axis

Direction of a vector can be given by the angles it makes with i, j, k directions.

For a = a1i + a2j + a3k which makes angles α, β, γ with positive direction of
x, y, z axes:

cos α = a1

|a|
, cos β = a2

|a|
, cos γ = a3

|a|

on CAS: angle([a b c], [1 0 0]) for angle between ai+bj +ck and x-axis

Vector projections

Vector resolute of a in direction of b is magnitude of a in direction of b:

u = a · b

|b|2
b =

(
a · b

|b|

) (
b

|b|

)
= (a · b̂)b̂

Scalar resolute of \boldsymbol{a} on \boldsymbol{b}

rs = |u| = a · b̂

Vector resolute of \boldsymbol{a} \perp \boldsymbol{b}

w = a − u where u is projection a on b

Vector proofs

Concurrent lines

≥ 3 lines intersect at a single point
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Collinear points

≥ 3 points lie on the same line
=⇒ O⃗C = λO⃗A + µO⃗B where λ + µ = 1. If C is between A⃗B, then 0 < µ < 1
Points A, B, C are collinear iff A⃗C = mA⃗B where m ̸= 0

Useful vector properties

• If a and b are parallel, then b = ka for some k ∈ R \ {0}

• If a and b are parallel with at least one point in common, then they lie
on the same straight line

• Two vectors a and b are perpendicular if a · b = 0

• a · a = |a|2

Linear dependence

Vectors a, b, c are linearly dependent if they are non-parallel and:

ka + lb + mc = 0

∴ c = ma + nb (simultaneous)

a, b, and c are linearly independent if no vector in the set is expressible as a
linear combination of other vectors in set, or if they are parallel.

Vector w is a linear combination of vectors v1, v2, v3

Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.

i
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Parametric vectors

Parametric equation of line through point (x0, y0, z0) and parallel to ai+bj +ck
is:


x = xo + a · t

y = y0 + b · t

z = z0 + c · t

Circular functions

Period of a sin(bx) is 2π
b

Period of a tan(nx) is π
n

Asymptotes at x = 2k+1)π
2n | k ∈ Z

Reciprocal functions

Cosecant

Figure 2:
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cosec θ = 1
sin θ

| sin θ ̸= 0

• Domain = R \ nπ : n ∈ Z

• Range = R \ (−1, 1)

• Turning points at θ = (2n+1)π
2 | n ∈ Z

• Asymptotes at θ = nπ | n ∈ Z

Secant

Figure 3:

sec θ = 1
cos θ

| cos θ ̸= 0

• Domain = R \ { (2n+1)π
2 : n ∈ Z}

• Range = R \ (−1, 1)

• Turning points at θ = nπ | n ∈ Z

• Asymptotes at θ = (2n+1)π
2 | n ∈ Z
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Cotangent

Figure 4:

cot θ = cos θ

sin θ
| sin θ ̸= 0

• Domain = R \ {nπ : n ∈ Z}

• Range = R

• Asymptotes at θ = nπ | n ∈ Z

Symmetry properties

sec(π ± x) = − sec x

sec(−x) = sec x

cosec(π ± x) = ∓ cosec x

cosec(−x) = − cosec x

cot(π ± x) = ± cot x

cot(−x) = − cot x
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Complementary properties

sec
(π

2
− x

)
= cosec x

cosec
(π

2
− x

)
= sec x

cot
(π

2
− x

)
= tan x

tan
(π

2
− x

)
= cot x

Pythagorean identities

1 + cot2 x = cosec2 x, where sin x ̸= 0
1 + tan2 x = sec2 x, where cos x ̸= 0

Compound angle formulas

cos(x ± y) = cos x + cos y ∓ sin x sin y

sin(x ± y) = sin x cos y ± cos x sin y

tan(x ± y) = tan x ± tan y

1 ∓ tan x tan y

Double angle formulas

cos 2x = cos2 x − sin2 x

= 1 − 2 sin2 x

= 2 cos2 x − 1

sin 2x = 2 sin x cos x

tan 2x = 2 tan x

1 − tan2 x

Inverse circular functions

Inverse functions: f(f−1(x)) = x, f(f−1(x)) = x
Must be 1:1 to find inverse (reflection in y = x

Domain is restricted to make functions 1:1.
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\arcsin

sin−1 : [−1, 1] → R, sin−1 x = y, where sin y = x and y ∈ [−π

2
,

π

2
]

\arcos

cos−1 → R, cos−1 x = y, where cos y = x and y ∈ [0, π]

\arctan

tan−1 : R → R, tan−1 x = y, where tan y = x and y ∈
(

−π

2
,

π

2

)
# Differential calculus

Limits

lim
x→a

f(x)

L− - limit from below

L+ - limit from above

limx→a f(x) - limit of a point

• Limit exists if L− = L+

• If limit exists, point does not.

Limits can be solved using normal techniques (if div 0, factorise)

Limit theorems

1. For constant function f(x) = k, limx→a f(x) = k

2. limx→a(f(x) ± g(x)) = F ± G

3. limx→a(f(x) × g(x)) = F × G

4. limx→a
f(x)
g(x) = F

G , G ̸= 0

Corollary: limx→a c × f(x) = cF where c = constant
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Solving limits for x\rightarrow\infty

Factorise so that all values of x are in denominators.

e.g.

lim
x→∞

2x + 3
x − 2

=
2 + 3

x

1 − 2
x

= 2
1

= 2

Continuous functions

A function is continuous if L− = L+ = f(x) for all values of x.

Gradients of secants and tangents

Secant (chord) - line joining two points on curve

Tangent - line that intersects curve at one point

given P (x, y) Q(x + δx, y + δy): gradient of chord joining P and Q is mP Q =
rise
run = δy

δx

As Q → P, δx → 0. Chord becomes tangent (two infinitesimal points are equal).

Can also be used with functions, where h = δx.

First principles derivative

f ′(x) = lim
δx→0

δy

δx
= dy

dx

mtan = lim
h→0

f ′(x)

mP⃗ Q = f ′(x)

first principles derivative:

mtangent at P = lim
h→0

f(x + h) − f(x)
h

Gradient at a point

Given point P (a, b) and function f(x), the gradient is f ′(a)
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Derivatives of x^n
d(axn)

dx
= anxn−1

If x = constant, derivative is 0

If y = axn, derivative is a × nxn−1

If f(x) = 1
x = x−1, f ′(x) = −1x−2 = −1

x2

If f(x) =5 √
x = x

1
5 , f ′(x) = 1

5 x−4/5 = 1
5×5

√
x4

If f(x) = (x − b)2, f ′(x) = 2(x − b)

f ′(x) = lim
h→0

f(x + h) − f(x)
h

Derivatives of u \pm v

dy

dx
= du

dx
± dv

dx

where u and v are functions of x

Euler’s number as a limit

lim
h→0

eh − 1
h

= 1

Chain rule for (f\circ g)

If f(x) = h(g(x)) = (h ◦ g)(x):

f ′(x) = h′(g(x)) · g′(x)

If y = h(u) and u = g(x):

dy

dx
= dy

du
· du

dx

d((ax + b)n)
dx

= d(ax + b)
dx

· n · (ax + b)n−1

Used with only one expression.
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e.g. y = (x2 + 5)7 - Cannot reasonably expand
Let u − x2 + 5 (inner expression)
du
dx = 2x
y = u7
dy
du = 7u6

Product rule for y=uv

dy

dx
= u

dv

dx
+ v

du

dx

Quotient rule for y={u \over v}

dy

dx
=

v du
dx − u dv

dx

v2

f ′(x) = v(x)u′(x) − u(x)v′(x)
[v(x)]2

Logarithms

logb(x) = n where bn = x

Wikipedia:

the logarithm of a given number x is the exponent to which another
fixed number, the base b, must be raised, to produce that number x

Logarithmic identities

logb(xy) = logb x + logb y
logb xn = n logb x
logb yxn = xn logb y

Index identities

bm+n = bm · bn

(bm)n = bm·n

(b · c)n = bn · cn

am ÷ an = am−n
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e as a logarithm

if y = ex, then x = loge y

ln x = loge x

Differentiating logarithms

d(loge x)
dx

= x−1 = 1
x

Derivative rules

f(x) f ′(x)
sin x cos x
sin ax a cos ax
cos x − sin x
cos ax −a sin ax
tan f(x) f2(x) sec2 f(x)
ex ex

eax aeax

axnx an · enx

loge x 1
x

loge ax 1
x

loge f(x) f ′(x)
f(x)

sin(f(x)) f ′(x) · cos(f(x))
sin−1 x 1√

1−x2

cos−1 x −1
sqrt1−x2

tan−1 x 1
1+x2

Reciprocal derivatives

1
dy
dx

= dx

dy

Differentiating x=f(y)

Find dx
dy . Then dx

dy = 1
dy
dx

=⇒ dy
dx = 1

dx
dy

.

dy

dx
= 1

dx
dy
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Second derivative

f(x) −→ f ′(x) −→ f ′′(x)

∴ y −→ dy

dx
−→

d( dy
dx )

dx
−→ d2y

dx2

Order of polynomial nth derivative decrements each time the derivative is taken

Points of Inflection

Stationary point - point of zero gradient (i.e. f ′(x) = 0)
Point of inflection - point of maximum |gradient| (i.e. f ′′ = 0)

• if f ′(a) = 0 and f ′′(a) > 0, then point (a, f(a)) is a local min (curve is
concave up)

• if f ′(a) = 0 and f ′′(a) < 0, then point (a, f(a)) is local max (curve is
concave down)

• if f ′′(a) = 0, then point (a, f(a)) is a point of inflection

• if also f ′(a) = 0, then it is a stationary point of inflection

Implicit Differentiation

On CAS: Action → Calculation → impDiff(y^2+ax=5, x, y). Returns y′ =
. . ..

Used for differentiating circles etc.

If p and q are expressions in x and y such that p = q, for all x nd y, then:

dp

dx
= dq

dx
and dp

dy
= dq

dy

Integration ∫
f(x) · dx = F (x) + c where F ′(x) = f(x)

∫
xn · dx = xn+1

n + 1
+ c

• area enclosed by curves

• +c should be shown on each step without
∫
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Figure 5:
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Integral laws∫
f(x) + g(x)dx =

∫
f(x)dx +

∫
g(x)dx∫

kf(x)dx = k
∫

f(x)dx

f(x)
∫

f(x) · dx

k (constant) kx + c

xn xn+1

n+1 + c

ax−n a · loge x + c
1

ax+b
1
a loge(ax + b) + c

(ax + b)n 1
a(n+1) (ax + b)n−1 + c

ekx 1
k ekx + c

ek ekx + c
sin kx − 1

k cos(kx) + c
cos kx 1

k sin(kx) + c
sec2 kx 1

k tan(kx) + c
1√

a2−x2 sin−1 x
a + c | a > 0

−1√
a2−x2 cos−1 x

a + c | a > 0
a

a2−x2 tan−1 x
a + c

f ′(x)
f(x) loge f(x) + c

g′(x) · f ′(g(x) f(g(x)) (chain rule)
f(x) · g(x)

∫
[f ′(x) · g(x)]dx +

∫
[g′(x)f(x)]dx

Note sin−1 x
a + cos−1 x

a is constant for all x ∈ (−a, a).

Definite integrals ∫ b

a

f(x) · dx = [F (x)]ba = F (b) − F (a)

• Signed area enclosed by: y = f(x), y = 0, x = a, x = b.

• Integrand is f .

• F (x) may be any integral, i.e. c is inconsequential

Properties

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

∫ a

a

f(x) dx = 0
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∫ b

a

k · f(x) dx = k

∫ b

a

f(x) dx

∫ b

a

f(x) ± g(x) dx =
∫ b

a

f(x) dx ±
∫ b

a

g(x) dx

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

Integration by substitution∫
f(u)du

dx
· dx =

∫
f(u) · du

Note f(u) must be one-to-one =⇒ one x value for each y value

e.g. for y =
∫

(2x + 1)
√

x + 4 · dx:
let u = x + 4
=⇒ du

dx = 1
=⇒ x = u − 4
then y =

∫
(2(u − 4) + 1)u 1

2 · du
Solve as a normal integral

Definite integrals by substitution

For
∫ b

a
f(x) du

dx · dx, evaluate new a and b for f(u) · du.

Trigonometric integration

sinm x cosn x · dx

m is odd:
m = 2k + 1 where k ∈ Z
=⇒ sin2k+1 x = (sin2 z)k sin x = (1 − cos2 x)k sin x
Substitute u = cos x

n is odd:
n = 2k + 1 where k ∈ Z
=⇒ cos2k+1 x = (cos2 x)k cos x = (1 − sin2 x)k cos x
Subbstitute u = sin x

m and n are even:
Use identities:

• sin2 x = 1
2 (1 − cos 2x)
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• cos2 x = 1
2 (1 + cos 2x)

• sin 2x = 2 sin x cos x

Partial fractions

On CAS: Action → Transformation → expand/combine
or Interactive → Transformation → expand → Partial

Graphing integrals on CAS

In main: Interactive → Calculation →
∫

(→ Definite)
Restrictions: Define f(x)=... → f(x)x>1 (e.g.)

Applications of antidifferentiation

• x-intercepts of y = f(x) identify x-coordinates of stationary points on
y = F (x)

• nature of stationary points is determined by sign of y = f(x) on either
side of its x-intercepts

• if f(x) is a polynomial of degree n, then F (x) has degree n + 1

To find stationary points of a function, substitute x value of given point into
derivative. Solve for dy

dx = 0. Integrate to find original function.

Solids of revolution

Approximate as sum of infinitesimally-thick cylinders

Rotation about x-axis

V =
∫ x=b

x−a

πy2 dx

= π

∫ b

a

(f(x))2 dx
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Rotation about y-axis

V =
∫ y=b

y=a

πx2 dy

= π

∫ b

a

(f(y))2 dy

Regions not bound by y=0

V = π

∫ b

a

f(x)2 − g(x)2 dx

where f(x) > g(x)

Length of a curve

L =
∫ b

a

√
1 + ( dy

dx
)2 dx (Cartesian)

L =
∫ b

a

√
dx

dt
+ (dy

dt
)2 dt (parametric)

Evaluate on CAS. Or use Interactive → Calculation → Line → arcLen.

Rates

Related rates

da

db
(change in a with respect to b)

Gradient at a point on parametric curve

dy

dx
= dy

dt
÷ dx

dt
| dx

dt
̸= 0

d2

dx2 = d(y′)
dx

= dy′

dt
÷ dx

dt
| y′ = dy

dx
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Rational functions

f(x) = P (x)
Q(x)

where P, Q are polynomial functions

Addition of ordinates

• when two graphs have the same ordinate, y-coordinate is double the ordi-
nate

• when two graphs have opposite ordinates, y-coordinate is 0 i.e. (x-
intercept)

• when one of the ordinates is 0, the resulting ordinate is equal to the other
ordinate

Fundamental theorem of calculus

If f is continuous on [a, b], then

∫ b

a

f(x) dx = F (b) − F (a)

where F is any antiderivative of f

Differential equations

One or more derivatives

Order - highest power inside derivative
Degree - highest power of highest derivative
e.g.

(
dy2

d2x

)3
: order 2, degree 3

Verifying solutions

Start with y = . . ., and differentiate. Substitute into original equation.

Function of the dependent variable

If dy
dx = g(y), then dx

dy = 1 ÷ dy
dx = 1

g(y) . Integrate both sides to solve equation.
Only add c on one side. Express ec as A.
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Mixing problems (
dm

dt

)
Σ

=
(

dm

dt

)
in

−
(

dm

dt

)
out

Separation of variables

If dy
dx = f(x)g(y), then:

∫
f(x) dx =

∫
1

g(y)
dy

Using definite integrals to solve DEs

Used for situations where solutions to dy
dx = f(x) is not required.

In some cases, it may not be possible to obtain an exact solution.

Approximate solutions can be found by numerically evaluating a definite inte-
gral.

Using Euler’s method to solve a differential equation

f(x + h) − f(x)
h

≈ f ′(x) for small h

=⇒ f(x + h) ≈ f(x) + hf ′(x)
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