Year 12 Specialist

Andrew Lorimer

Complex \& Imaginary Numbers

Imaginary numbers

$$
i^{2}=-1 \quad \therefore i=\sqrt{-1}
$$

Simplifying negative surds

$$
\begin{aligned}
\sqrt{-2} & =\sqrt{-1 \times 2} \\
& =\sqrt{2} i
\end{aligned}
$$

Complex numbers

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}
$$

General form: $z=a+b i$
$\operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b$

Addition

If $z_{1}=a+b i$ and $z_{2}=c+d i$, then

$$
z_{1}+z_{2}=(a+c)+(b+d) i
$$

Subtraction

If $z_{1}=a+b i$ and $z_{2}=c+d i$, then

$$
z_{1}-z_{2}=(a c)+(b d) i
$$

Multiplication by a real constant

If $z=a+b i$ and $k \in \mathbb{R}$, then

$$
k z=k a+k b i
$$

Powers of \mathbf{i}

- $i^{4 n}=1$
- $i^{4 n+1}=i$
- $i^{4 n+2}=-1$
- $i^{4 n+3}=-i$

For i^{n}, find remainder r when $n \div 4$. Then $i^{n}=i^{r}$.

Multiplying complex expressions

If $z_{1}=a+b i$ and $z_{2}=c+d i$, then

$$
z_{1} \times z_{2}=(a c-b d)+(a d+b c) i
$$

Conjugates

$$
\bar{z}=a \mp b i
$$

Properties

- $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
- $\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$
- $\overline{k z}=k \bar{z}$, for $k \in \mathbb{R}$
- $z \bar{z}==(a+b i)(a-b i)=a^{2}+b^{2}=|z|^{2}$
- $z+\bar{z}=2 \operatorname{Re}(z)$

Modulus

Distance from origin.

$$
|z|=\sqrt{a^{2}+b^{2}} \quad \therefore z \bar{z}=|z|^{2}
$$

Properties

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}+\left|z_{2}\right|\right.$

Multiplicative inverse

$$
\begin{aligned}
z^{-1} & =\frac{1}{z} \\
& =\frac{a-b i}{a^{2}+B^{2}} \\
& =\frac{\bar{z}}{|z|^{2}}
\end{aligned}
$$

Dividing complex numbers

$$
\frac{z_{1}}{z_{2}}=z_{1} z_{2}^{-1}=\frac{z_{1} \overline{z_{2}}}{\left|z_{2}\right|^{2}} \quad \text { (multiplicative inverse) }
$$

In practice, rationalise denominator:

$$
\frac{z_{1}}{z_{2}}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}
$$

Argand planes

- Geometric representation of \mathbb{C}
- horizontal $=\operatorname{Re}(z)$; vertical $=\operatorname{Im}(z)$
- Multiplication by i results in an anticlockwise rotation of $\frac{\pi}{2}$

Complex polynomials

Include \pm for all solutions, including imaginary

Sum of two squares (quadratics)

$$
z^{2}+a^{2}=z^{2}-(a i)^{2}=(z+a i)(z-a i)
$$

Complete the square to get to this point.

Dividing complex polynomials
$P(z) \div D(z)$ gives quotient $Q(z)$ and remainder $R(z)$:

$$
P(z)=D(z) Q(z)+R(z)
$$

Remainder theorem

Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div(z-\alpha)$ is $P(\alpha)$

Factor theorem

If $a+b i$ is a solution to $P(z)=0$, then:

- $P(a+b i)=0$
- $z-(a+b i)$ is a factor of $P(z)$

Sum of two cubes

$$
a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \mp a b+b^{2}\right)
$$

Conjugate root theorem

If $a+b i$ is a solution to $P(z)=0$, then the conjugate $\bar{z}=a-b i$ is also a solution.

Polar form

$$
\begin{aligned}
z & =r \operatorname{cis} \theta \\
& =r(\cos \theta+i \sin \theta) \\
& =a+b i
\end{aligned}
$$

- $r=|z|=\sqrt{\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2}}$
- $\theta=\arg (z)$ (on CAS: $\arg (\mathrm{a}+\mathrm{bi}))$
- principal argument is $\operatorname{Arg}(z) \in(-\pi, \pi]$ (note capital Arg)

Each complex number has multiple polar representations:
$z=r \operatorname{cis} \theta=r \operatorname{cis}(\theta+2 n \pi)$ with $n \in \mathbb{Z}$ revolutions

Conjugate in polar form

$$
(r \operatorname{cis} \theta)^{-1}=r \operatorname{cis}(-\theta)
$$

Reflection of z across horizontal axis.

Multiplication and division in polar form

$$
\begin{gathered}
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right) \\
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{gathered}
$$

de Moivres' Theorem

$$
(r \operatorname{cis} \theta)^{n}=r^{n} \operatorname{cis}(n \theta) \text { where } n \in \mathbb{Z}
$$

Roots of complex numbers

nth roots of $z=r \operatorname{cis} \theta$ are

$$
z=r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2 k \pi}{n}\right)
$$

Same modulus for all solutions. Arguments are separated by $\frac{2 \pi}{n}$
The solutions of $z^{n}=a$ where $a \in \mathbb{C}$ lie on circle

$$
x^{2}+y^{2}=\left(|a|^{\frac{1}{n}}\right)^{2}
$$

Sketching complex graphs

Straight line

- $\operatorname{Re}(z)=c$ or $\operatorname{Im}(z)=c$ (perpendicular bisector)
- $\operatorname{Arg}(z)=\theta$
- $|z+a|=|z+b i|$ where $m=\frac{a}{b}$
- $|z+a|=|z+b| \longrightarrow 2(a-b) x=b^{2}-a^{2}$

Circle

$\left|z-z_{1}\right|^{2}=c^{2}\left|z_{2}+2\right|^{2}$ or $|z-(a+b i)|=c$

Locus

$\operatorname{Arg}(z)<\theta$

Vectors

- vector: a directed line segment
- arrow indicates direction
- length indicates magnitude
- column notation: $\left[\begin{array}{l}x \\ y\end{array}\right]$
- vectors with equal magnitude and direction are equivalent

Figure 1:

Vector addition

$\boldsymbol{u}+\boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.
Addition is commutative (parallelogram)

Scalar multiplication

For $k \in \mathbb{R}^{+}, k \boldsymbol{u}$ has the same direction as \boldsymbol{u} but length is multiplied by a factor of k.

When multiplied by $k<0$, direction is reversed and length is multplied by k.

Vector subtraction

To find $\boldsymbol{u}-\boldsymbol{v}$, add $-\boldsymbol{v}$ to \boldsymbol{u}

Parallel vectors

Same or opposite direction

$$
\boldsymbol{u} \| \boldsymbol{v} \Longleftrightarrow \boldsymbol{u}=k \boldsymbol{v} \text { where } k \in \mathbb{R} \backslash\{0\}
$$

Position vectors

Vectors may describe a position relative to O.
For a point A, the position vector is

Linear combinations of non-parallel vectors

If two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are not parallel, then:

$$
m \boldsymbol{a}+n \boldsymbol{b}=p \boldsymbol{a}+q \boldsymbol{b} \quad \therefore \quad m=p, n=q
$$

Column vector notation

A vector between points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ can be represented as $\left[\begin{array}{l}x_{2}-x_{1} \\ y_{2}-y_{1}\end{array}\right]$

Component notation

A vector $\boldsymbol{u}=\left[\begin{array}{l}x \\ y\end{array}\right]$ can be written as $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}$.
\boldsymbol{u} is the sum of two components $x \boldsymbol{i}$ and $y \boldsymbol{j}$
Magnitude of vector $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}$ is denoted by $|u|=\sqrt{x^{2}+y^{2}}$
Basic algebra applies:
$(x \boldsymbol{i}+y \boldsymbol{j})+(m \boldsymbol{i}+n \boldsymbol{j})=(x+m) \boldsymbol{i}+(y+n) \boldsymbol{j}$
Two vectors equal if and only if their components are equal.

Unit vector \backslash hat $\{\backslash$ boldsymbol $\{\mathrm{a}\}\}=1$

$$
\begin{aligned}
\hat{\boldsymbol{a}} & =\frac{1}{|\boldsymbol{a}|} \boldsymbol{a} \\
& =\boldsymbol{a} \cdot|\boldsymbol{a}|
\end{aligned}
$$

Scalar/dot product \backslash boldsymbol $\{\mathrm{a}\} \backslash$ cdot \backslash boldsymbol $\{\mathrm{b}\}$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}
$$

on CAS: $\operatorname{dotP}\left(\left[\begin{array}{ll}a & b \\ c\end{array}\right],[d e f]\right)$

Scalar product properties

1. $k(\boldsymbol{a} \cdot \boldsymbol{b})=(k \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot(k b)$
2. $\boldsymbol{a} \cdot \mathbf{0}=0$
3. $\boldsymbol{a} \cdot(b+c)=a \cdot b+a \cdot c$
4. $\boldsymbol{i} \cdot \boldsymbol{i}=\boldsymbol{j} \cdot \boldsymbol{j}=\boldsymbol{k} \cdot \boldsymbol{k}=1$
5. If $\boldsymbol{a} \cdot \boldsymbol{b}=0, \boldsymbol{a}$ and \boldsymbol{b} are perpendicular
6. $\boldsymbol{a} \cdot \boldsymbol{a}=|\boldsymbol{a}|^{2}=a^{2}$

For parallel vectors \boldsymbol{a} and \boldsymbol{b} :

$$
\boldsymbol{a} \cdot \boldsymbol{b}= \begin{cases}|\boldsymbol{a}||\boldsymbol{b}| & \text { if same direction } \\ -|\boldsymbol{a}||\boldsymbol{b}| & \text { if opposite directions }\end{cases}
$$

Geometric scalar products

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta
$$

where $0 \leq \theta \leq \pi$

Perpendicular vectors

If $\boldsymbol{a} \cdot \boldsymbol{b}=0$, then $\boldsymbol{a} \perp \boldsymbol{b}($ since $\cos 90=0)$

Finding angle between vectors

positive direction

$$
\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

on CAS: angle([a b c], [a bc]) (Action $->$ Vector $->$ Angle)

Angle between vector and axis

Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions.
For $\boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ which makes angles α, β, γ with positive direction of x, y, z axes:

$$
\cos \alpha=\frac{a_{1}}{|\boldsymbol{a}|}, \quad \cos \beta=\frac{a_{2}}{|\boldsymbol{a}|}, \quad \cos \gamma=\frac{a_{3}}{|\boldsymbol{a}|}
$$

on CAS: angle ([lach, $\left.\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]$) for angle between $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ and x-axis

Vector projections

Vector resolute of \boldsymbol{a} in direction of \boldsymbol{b} is magnitude of \boldsymbol{a} in direction of \boldsymbol{b} :

$$
u=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|^{2}} \boldsymbol{b}=\left(\boldsymbol{a} \cdot \frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}}) \hat{\boldsymbol{b}}
$$

Scalar resolute of \backslash boldsymbol $\{a\}$ on \backslash boldsymbol $\{b\}$

$$
r_{s}=|\boldsymbol{u}|=\boldsymbol{a} \cdot \hat{\boldsymbol{b}}
$$

Vector resolute of \backslash boldsymbol $\{a\} \backslash$ perp \backslash boldsymbol $\{b\}$
 $$
\boldsymbol{w}=\boldsymbol{a}-\boldsymbol{u} \text { where } \boldsymbol{u} \text { is projection } \boldsymbol{a} \text { on } \boldsymbol{b}
$$

Vector proofs

Concurrent lines
≥ 3 lines intersect at a single point

Collinear points

≥ 3 points lie on the same line
$\Longrightarrow \overrightarrow{O C}=\lambda \overrightarrow{O A}+\mu \overrightarrow{O B}$ where $\lambda+\mu=1$. If C is between $\overrightarrow{A B}$, then $0<\mu<1$ Points A, B, C are collinear iff $\overrightarrow{A C}=m \overrightarrow{A B}$ where $m \neq 0$

Useful vector properties

- If \boldsymbol{a} and \boldsymbol{b} are parallel, then $\boldsymbol{b}=k \boldsymbol{a}$ for some $k \in \mathbb{R} \backslash\{0\}$
- If \boldsymbol{a} and \boldsymbol{b} are parallel with at least one point in common, then they lie on the same straight line
- Two vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
- $\boldsymbol{a} \cdot \boldsymbol{a}=|\boldsymbol{a}|^{2}$

Linear dependence

Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are non-parallel and:

$$
\begin{gathered}
k \boldsymbol{a}+l \boldsymbol{b}+m \boldsymbol{c}=0 \\
\therefore \boldsymbol{c}=m \boldsymbol{a}+n \boldsymbol{b} \quad \text { (simultaneous) }
\end{gathered}
$$

$\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.

Vector \boldsymbol{w} is a linear combination of vectors $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}$

Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.

Parametric vectors

Parametric equation of line through point $\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ is:

$$
\left\{\begin{array}{l}
x=x_{o}+a \cdot t \\
y=y_{0}+b \cdot t \\
z=z_{0}+c \cdot t
\end{array}\right.
$$

Circular functions

Period of $a \sin (b x)$ is $\frac{2 \pi}{b}$
Period of $a \tan (n x)$ is $\frac{\pi}{n}$
Asymptotes at $\left.x=\frac{2 k+1) \pi}{2 n} \right\rvert\, k \in \mathbb{Z}$

Reciprocal functions

Cosecant

Figure 2:

$$
\left.\operatorname{cosec} \theta=\frac{1}{\sin \theta} \right\rvert\, \sin \theta \neq 0
$$

- Domain $=\mathbb{R} \backslash n \pi: n \in \mathbb{Z}$
- Range $=\mathbb{R} \backslash(-1,1)$
- Turning points at $\left.\theta=\frac{(2 n+1) \pi}{2} \right\rvert\, n \in \mathbb{Z}$
- Asymptotes at $\theta=n \pi \mid n \in \mathbb{Z}$

Secant

Figure 3:

$$
\left.\sec \theta=\frac{1}{\cos \theta} \right\rvert\, \cos \theta \neq 0
$$

- Domain $=\mathbb{R} \backslash\left\{\frac{(2 n+1) \pi}{2}: n \in \mathbb{Z}\right\}$
- Range $=\mathbb{R} \backslash(-1,1)$
- Turning points at $\theta=n \pi \mid n \in \mathbb{Z}$
- Asymptotes at $\left.\theta=\frac{(2 n+1) \pi}{2} \right\rvert\, n \in \mathbb{Z}$

Cotangent

Figure 4:

$$
\left.\cot \theta=\frac{\cos \theta}{\sin \theta} \right\rvert\, \sin \theta \neq 0
$$

- Domain $=\mathbb{R} \backslash\{n \pi: n \in \mathbb{Z}\}$
- Range $=\mathbb{R}$
- Asymptotes at $\theta=n \pi \mid n \in \mathbb{Z}$

Symmetry properties

$$
\begin{aligned}
\sec (\pi \pm x) & =-\sec x \\
\sec (-x) & =\sec x \\
\operatorname{cosec}(\pi \pm x) & =\mp \operatorname{cosec} x \\
\operatorname{cosec}(-x) & =-\operatorname{cosec} x \\
\cot (\pi \pm x) & = \pm \cot x \\
\cot (-x) & =-\cot x
\end{aligned}
$$

Complementary properties

$$
\begin{aligned}
\sec \left(\frac{\pi}{2}-x\right) & =\operatorname{cosec} x \\
\operatorname{cosec}\left(\frac{\pi}{2}-x\right) & =\sec x \\
\cot \left(\frac{\pi}{2}-x\right) & =\tan x \\
\tan \left(\frac{\pi}{2}-x\right) & =\cot x
\end{aligned}
$$

Pythagorean identities

$$
\begin{aligned}
& 1+\cot ^{2} x=\operatorname{cosec}^{2} x, \quad \text { where } \sin x \neq 0 \\
& 1+\tan ^{2} x=\sec ^{2} x, \quad \text { where } \cos x \neq 0
\end{aligned}
$$

Compound angle formulas

$$
\begin{gathered}
\cos (x \pm y)=\cos x+\cos y \mp \sin x \sin y \\
\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
\end{gathered}
$$

Double angle formulas

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =1-2 \sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
\sin 2 x & =2 \sin x \cos x \\
\tan 2 x & =\frac{2 \tan x}{1-\tan ^{2} x}
\end{aligned}
$$

Inverse circular functions

Inverse functions: $f\left(f^{-1}(x)\right)=x, \quad f\left(f^{-1}(x)\right)=x$ Must be 1:1 to find inverse (reflection in $y=x$

Domain is restricted to make functions 1:1.
$\backslash \arcsin$

$$
\sin ^{-1}:[-1,1] \rightarrow \mathbb{R}, \quad \sin ^{-1} x=y, \quad \text { where } \sin y=x \text { and } y \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]
$$

$\backslash \operatorname{arcos}$

$$
\cos ^{-1} \rightarrow \mathbb{R}, \quad \cos ^{-1} x=y, \quad \text { where } \cos y=x \text { and } y \in[0, \pi]
$$

$\backslash \arctan$

$$
\tan ^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan ^{-1} x=y, \quad \text { where } \tan y=x \text { and } y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

\# Differential calculus

Limits

$$
\lim _{x \rightarrow a} f(x)
$$

L^{-}- limit from below
L^{+}- limit from above
$\lim _{x \rightarrow a} f(x)$ - limit of a point

- Limit exists if $L^{-}=L^{+}$
- If limit exists, point does not.

Limits can be solved using normal techniques (if div 0 , factorise)

Limit theorems

1. For constant function $f(x)=k, \lim _{x \rightarrow a} f(x)=k$
2. $\lim _{x \rightarrow a}(f(x) \pm g(x))=F \pm G$
3. $\lim _{x \rightarrow a}(f(x) \times g(x))=F \times G$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}, G \neq 0$

Corollary: $\lim _{x \rightarrow a} c \times f(x)=c F$ where $c=$ constant

Solving limits for $\mathrm{x} \backslash$ rightarrow \backslash infty

Factorise so that all values of x are in denominators.
e.g.

$$
\lim _{x \rightarrow \infty} \frac{2 x+3}{x-2}=\frac{2+\frac{3}{x}}{1-\frac{2}{x}}=\frac{2}{1}=2
$$

Continuous functions

A function is continuous if $L^{-}=L^{+}=f(x)$ for all values of x.

Gradients of secants and tangents

Secant (chord) - line joining two points on curve
Tangent - line that intersects curve at one point
given $P(x, y) \quad Q(x+\delta x, y+\delta y)$: gradient of chord joining P and Q is $m_{P Q}=$ $\frac{\text { rise }}{\text { run }}=\frac{\delta y}{\delta x}$
As $Q \rightarrow P, \delta x \rightarrow 0$. Chord becomes tangent (two infinitesimal points are equal).
Can also be used with functions, where $h=\delta x$.

First principles derivative

$$
\begin{gathered}
f^{\prime}(x)=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\frac{d y}{d x} \\
m_{\tan }=\lim _{h \rightarrow 0} f^{\prime}(x) \\
m_{\overrightarrow{P Q}}=f^{\prime}(x)
\end{gathered}
$$

first principles derivative:

$$
m_{\text {tangent at } P}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Gradient at a point

Given point $P(a, b)$ and function $f(x)$, the gradient is $f^{\prime}(a)$

Derivatives of $\times \widehat{n}$

$$
\frac{d\left(a x^{n}\right)}{d x}=a n x^{n-1}
$$

If $x=$ constant, derivative is 0
If $y=a x^{n}$, derivative is $a \times n x^{n-1}$
If $f(x)=\frac{1}{x}=x^{-1}, \quad f^{\prime}(x)=-1 x^{-2}=\frac{-1}{x^{2}}$
If $f(x)=\sqrt{x}=x^{\frac{1}{5}}, \quad f^{\prime}(x)=\frac{1}{5} x^{-4 / 5}=\frac{1}{5 \times^{5} \sqrt{x^{4}}}$
If $f(x)=(x-b)^{2}, \quad f^{\prime}(x)=2(x-b)$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivatives of $\mathbf{u} \backslash \mathrm{pm} \mathbf{v}$

$$
\frac{d y}{d x}=\frac{d u}{d x} \pm \frac{d v}{d x}
$$

where u and v are functions of x

Euler's number as a limit

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Chain rule for ($\mathrm{f} \backslash \operatorname{circ} \mathrm{g}$)

If $f(x)=h(g(x))=(h \circ g)(x):$

$$
f^{\prime}(x)=h^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

If $y=h(u)$ and $u=g(x)$:

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
\frac{d\left((a x+b)^{n}\right)}{d x}=\frac{d(a x+b)}{d x} \cdot n \cdot(a x+b)^{n-1}
\end{gathered}
$$

Used with only one expression.
e.g. $y=\left(x^{2}+5\right)^{7}$ - Cannot reasonably expand

Let $u-x^{2}+5$ (inner expression)
$\frac{d u}{d x}=2 x$
$y=u^{7}$
$\frac{d y}{d u}=7 u^{6}$

Product rule for $\mathrm{y}=\mathrm{uv}$

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Quotient rule for $y=\{u \backslash$ over $v\}$

$$
\begin{gathered}
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
f^{\prime}(x)=\frac{v(x) u^{\prime}(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}}
\end{gathered}
$$

Logarithms

$$
\log _{b}(x)=n \quad \text { where } \quad b^{n}=x
$$

Wikipedia:
the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x

Logarithmic identities

$\log _{b}(x y)=\log _{b} x+\log _{b} y$
$\log _{b} x^{n}=n \log _{b} x$
$\log _{b} y^{x^{n}}=x^{n} \log _{b} y$

Index identities

$$
\begin{aligned}
& b^{m+n}=b^{m} \cdot b^{n} \\
& \left(b^{m}\right)^{n}=b^{m \cdot n} \\
& (b \cdot c)^{n}=b^{n} \cdot c^{n} \\
& a^{m} \div a^{n}=a^{m-n}
\end{aligned}
$$

e as a logarithm

$$
\begin{gathered}
\text { if } y=e^{x}, \quad \text { then } x=\log _{e} y \\
\ln x=\log _{e} x
\end{gathered}
$$

Differentiating logarithms

$$
\frac{d\left(\log _{e} x\right)}{d x}=x^{-1}=\frac{1}{x}
$$

Derivative rules

$f(x)$	$f^{\prime}(x)$
$\sin x$	$\cos x$
$\sin a x$	$a \cos a x$
$\cos x$	$-\sin x$
$\cos a x$	$-a \sin a x$
$\tan f(x)$	$f^{2}(x) \sec ^{2} f(x)$
e^{x}	e^{x}
$e^{a x}$	$a e^{a x}$
$a x^{n x}$	$a n \cdot e^{n x}$
$\log _{e} x$	$\frac{1}{x}$
$\log _{e} a x$	$\frac{1}{x}$
$\log _{e} f(x)$	$\frac{f^{\prime}(x)}{f(x)}$
$\sin ^{\prime}(f(x))$	$f^{\prime}(x) \cdot \cos (f(x))$
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\cos ^{-1} x$	$\frac{-1}{s q r t 1-x^{2}}$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$

Reciprocal derivatives

$$
\frac{1}{\frac{d y}{d x}}=\frac{d x}{d y}
$$

Differentiating $x=f(y)$

Find $\frac{d x}{d y}$. Then $\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}} \Longrightarrow \frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}$.

$$
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}
$$

Second derivative

$$
\begin{gathered}
f(x) \longrightarrow f^{\prime}(x) \longrightarrow f^{\prime \prime}(x) \\
\therefore y \longrightarrow \frac{d y}{d x} \longrightarrow \frac{d\left(\frac{d y}{d x}\right)}{d x} \longrightarrow \frac{d^{2} y}{d x^{2}}
\end{gathered}
$$

Order of polynomial nth derivative decrements each time the derivative is taken

Points of Inflection

Stationary point - point of zero gradient (i.e. $f^{\prime}(x)=0$)
Point of inflection - point of maximum |gradient| (i.e. $f^{\prime \prime}=0$)

- if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then point $(a, f(a))$ is a local min (curve is concave up)
- if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, then point $(a, f(a))$ is local max (curve is concave down)
- if $f^{\prime \prime}(a)=0$, then point $(a, f(a))$ is a point of inflection
- if also $f^{\prime}(a)=0$, then it is a stationary point of inflection

Implicit Differentiation

On CAS: Action \rightarrow Calculation \rightarrow impDiff $\left(\mathrm{y}^{\wedge} 2+\mathrm{ax}=5, \mathrm{x}, \mathrm{y}\right)$. Returns $y^{\prime}=$

Used for differentiating circles etc.
If p and q are expressions in x and y such that $p=q$, for all x nd y, then:

$$
\frac{d p}{d x}=\frac{d q}{d x} \quad \text { and } \quad \frac{d p}{d y}=\frac{d q}{d y}
$$

Integration

$$
\begin{gathered}
\int f(x) \cdot d x=F(x)+c \quad \text { where } F^{\prime}(x)=f(x) \\
\int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}+c
\end{gathered}
$$

- area enclosed by curves
- $+c$ should be shown on each step without \int
$\left.\begin{array}{|l|l|l|l|}\hline \frac{d^{2} y}{d x^{2}}>0\end{array} \quad \frac{d^{2} y}{d x^{2}}<0 \quad \begin{array}{l}\frac{d^{2} y}{d x^{2}}=0 \text { and } \\ \text { point of inflection }\end{array}\right]$

Figure 5:

Integral laws

$\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x$
$\int k f(x) d x=k \int f(x) d x$

$f(x)$	$\int f(x) \cdot d x$
$k($ constant $)$	$k x+c$
x^{n}	$\frac{x^{n+1}}{n+1}+c$
$a x^{-n}$	$a \cdot \log _{e} x+c$
$\frac{1}{a x+b}$	$\frac{1}{a} \log _{e}(a x+b)+c$
$(a x+b)^{n}$	$\frac{1}{a(n+1)}(a x+b)^{n-1}+c$
$e^{k x}$	$\frac{1}{k} e^{k x}+c$
e^{k}	$e^{k} x+c$
$\sin k x$	$-\frac{1}{k} \cos (k x)+c$
$\cos k x$	$\frac{1}{k} \sin (k x)+c$
$\sec ^{2} k x$	$\frac{1}{k} \tan (k x)+c$
$\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\left.\sin ^{-1} \frac{x}{a}+c \right\rvert\, a>0$
$\frac{-1}{\sqrt{a^{2}-x^{2}}}$	$\left.\cos ^{-1} \frac{x}{a}+c \right\rvert\, a>0$
$\frac{a}{a^{2}-x^{2}}$	$\tan ^{-1} \frac{x}{a}+c$
$\frac{f^{\prime}(x)}{f(x)}$	$\log _{e} f(x)+c$
$g^{\prime}(x) \cdot f^{\prime}(g(x)$	$f(g(x))(\operatorname{chain}$ rule $)$
$f(x) \cdot g(x)$	$\int\left[f^{\prime}(x) \cdot g(x)\right] d x+\int\left[g^{\prime}(x) f(x)\right] d x$

Note $\sin ^{-1} \frac{x}{a}+\cos ^{-1} \frac{x}{a}$ is constant for all $x \in(-a, a)$.

Definite integrals

$$
\int_{a}^{b} f(x) \cdot d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

- Signed area enclosed by: $y=f(x), \quad y=0, \quad x=a, \quad x=b$.
- Integrand is f.
- $F(x)$ may be any integral, i.e. c is inconsequential

Properties

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \\
\int_{a}^{a} f(x) d x=0
\end{gathered}
$$

$$
\begin{gathered}
\int_{a}^{b} k \cdot f(x) d x=k \int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) \pm g(x) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x \\
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
\end{gathered}
$$

Integration by substitution

$$
\int f(u) \frac{d u}{d x} \cdot d x=\int f(u) \cdot d u
$$

Note $f(u)$ must be one-to-one \Longrightarrow one x value for each y value
e.g. for $y=\int(2 x+1) \sqrt{x+4} \cdot d x$:
let $u=x+4$
$\Longrightarrow \frac{d u}{d x}=1$
$\Longrightarrow x=u-4$
then $y=\int(2(u-4)+1) u^{\frac{1}{2}} \cdot d u$
Solve as a normal integral

Definite integrals by substitution

For $\int_{a}^{b} f(x) \frac{d u}{d x} \cdot d x$, evaluate new a and b for $f(u) \cdot d u$.

Trigonometric integration

$$
\sin ^{m} x \cos ^{n} x \cdot d x
$$

m is odd:
$m=2 k+1$ where $k \in \mathbb{Z}$
$\Longrightarrow \sin ^{2 k+1} x=\left(\sin ^{2} z\right)^{k} \sin x=\left(1-\cos ^{2} x\right)^{k} \sin x$
Substitute $u=\cos x$
n is odd:
$n=2 k+1$ where $k \in \mathbb{Z}$
$\Longrightarrow \cos ^{2 k+1} x=\left(\cos ^{2} x\right)^{k} \cos x=\left(1-\sin ^{2} x\right)^{k} \cos x$
Subbstitute $u=\sin x$
m and n are even:
Use identities:

- $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
- $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
- $\sin 2 x=2 \sin x \cos x$

Partial fractions

On CAS: Action \rightarrow Transformation \rightarrow expand/combine or Interactive \rightarrow Transformation \rightarrow expand \rightarrow Partial

Graphing integrals on CAS

In main: Interactive \rightarrow Calculation $\rightarrow \int(\rightarrow$ Definite $)$
Restrictions: Define $f(x)=\ldots \rightarrow f(x) x>1$ (e.g.)

Applications of antidifferentiation

- x-intercepts of $y=f(x)$ identify x-coordinates of stationary points on $y=F(x)$
- nature of stationary points is determined by sign of $y=f(x)$ on either side of its x-intercepts
- if $f(x)$ is a polynomial of degree n, then $F(x)$ has degree $n+1$

To find stationary points of a function, substitute x value of given point into derivative. Solve for $\frac{d y}{d x}=0$. Integrate to find original function.

Solids of revolution

Approximate as sum of infinitesimally-thick cylinders

Rotation about x -axis

$$
\begin{aligned}
V & =\int_{x-a}^{x=b} \pi y^{2} d x \\
& =\pi \int_{a}^{b}(f(x))^{2} d x
\end{aligned}
$$

Rotation about y-axis

$$
\begin{aligned}
V & =\int_{y=a}^{y=b} \pi x^{2} d y \\
& =\pi \int_{a}^{b}(f(y))^{2} d y
\end{aligned}
$$

Regions not bound by $\mathrm{y}=0$

$$
V=\pi \int_{a}^{b} f(x)^{2}-g(x)^{2} d x
$$

where $f(x)>g(x)$

Length of a curve

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad \text { (Cartesian) } \\
L & =\int_{a}^{b} \sqrt{\frac{d x}{d t}+\left(\frac{d y}{d t}\right)^{2}} d t \quad \text { (parametric) }
\end{aligned}
$$

Evaluate on CAS. Or use Interactive \rightarrow Calculation \rightarrow Line \rightarrow arcLen.

Rates

Related rates

$$
\frac{d a}{d b} \quad(\text { change in } a \text { with respect to } b)
$$

Gradient at a point on parametric curve

$$
\begin{gathered}
\left.\frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t} \right\rvert\, \frac{d x}{d t} \neq 0 \\
\left.\frac{d^{2}}{d x^{2}}=\frac{d\left(y^{\prime}\right)}{d x}=\frac{d y^{\prime}}{d t} \div \frac{d x}{d t} \right\rvert\, y^{\prime}=\frac{d y}{d x}
\end{gathered}
$$

Rational functions

$$
f(x)=\frac{P(x)}{Q(x)} \quad \text { where } P, Q \text { are polynomial functions }
$$

Addition of ordinates

- when two graphs have the same ordinate, y-coordinate is double the ordinate
- when two graphs have opposite ordinates, y-coordinate is 0 i.e. (x intercept)
- when one of the ordinates is 0 , the resulting ordinate is equal to the other ordinate

Fundamental theorem of calculus

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f

Differential equations

One or more derivatives
Order - highest power inside derivative
Degree - highest power of highest derivative
e.g. $\left(\frac{d y^{2}}{d^{2} x}\right)^{3}$: order 2 , degree 3

Verifying solutions

Start with $y=\ldots$, and differentiate. Substitute into original equation.

Function of the dependent variable
If $\frac{d y}{d x}=g(y)$, then $\frac{d x}{d y}=1 \div \frac{d y}{d x}=\frac{1}{g(y)}$. Integrate both sides to solve equation. Only add c on one side. Express e^{c} as A.

Mixing problems

$$
\left(\frac{d m}{d t}\right)_{\Sigma}=\left(\frac{d m}{d t}\right)_{\mathrm{in}}-\left(\frac{d m}{d t}\right)_{\mathrm{out}}
$$

Separation of variables

If $\frac{d y}{d x}=f(x) g(y)$, then:

$$
\int f(x) d x=\int \frac{1}{g(y)} d y
$$

Using definite integrals to solve DEs

Used for situations where solutions to $\frac{d y}{d x}=f(x)$ is not required.
In some cases, it may not be possible to obtain an exact solution.
Approximate solutions can be found by numerically evaluating a definite integral.

Using Euler's method to solve a differential equation

$$
\begin{gathered}
\frac{f(x+h)-f(x)}{h} \approx f^{\prime}(x) \text { for small } h \\
\Longrightarrow f(x+h) \approx f(x)+h f^{\prime}(x)
\end{gathered}
$$

