Year 12 Methods

Andrew Lorimer

1 Functions

- vertical line test
- each x value produces only one y value

One to one functions

- f(x) is one to one if f(a) ≠ f(b) if a, b ∈ dom(f) and a ≠ b
 - \implies unique y for each x (sin x is not 1:1, x^3 is)
- horizontal line test
- if not one to one, it is many to one

Finding inverse functions f^{-1}

- if f(g(x)) = x, then g is the inverse of f
- reflection across y x
- ran $f = \operatorname{dom} f^{-1}$, dom $f = \operatorname{ran} f^{-1}$
- inverse ≠ inverse function (i.e. inverse must pass vertical line test)
 - $\implies f^{-1}(x)$ exists $\iff f(x)$ is one to one
- $f^{-1}(x) = f(x)$ intersections may lie on line y = x

Requirements for showing working for f^{-1}

- 1. start with "let y = f(x)"
- 2. must state "take inverse" for line where y and x are swapped
- 3. do all working in terms of $y = \dots$
- 4. for sqrt, state \pm solutions then show restricted
- 5. for inverse *function*, state in function notation

Solving
$$\begin{cases} px + qy = a \\ rx + sy = b \end{cases}$$
 for $\{0, 1, \infty\}$ solutions

where all coefficients are known except for one, and a, bare known

1. Write as matrices: $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ 2. Find determinant of first matrix: $\Delta = ps - qr$

- 3. Let $\Delta = 0$ for number of solutions $\neq 1$ or let $\Delta \neq 0$ for one unique solution.
- 4. Solve determinant equation to find variable For infinite/no solutions:
- 5. Substitute variable into both original equations
- 6. Rearrange equations so that LHS of each is the same
- 7. RHS(1) = RHS(2) \implies (1) = (2) $\forall x \ (\infty \text{ solns})$ RHS(1) \neq RHS(2) \implies (1) \neq (2) $\forall x \ (0 \text{ solns})$

On CAS: Matrix $\rightarrow det$

Solving
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

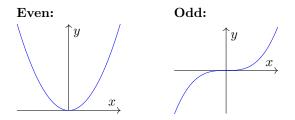
- Use elimination
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable

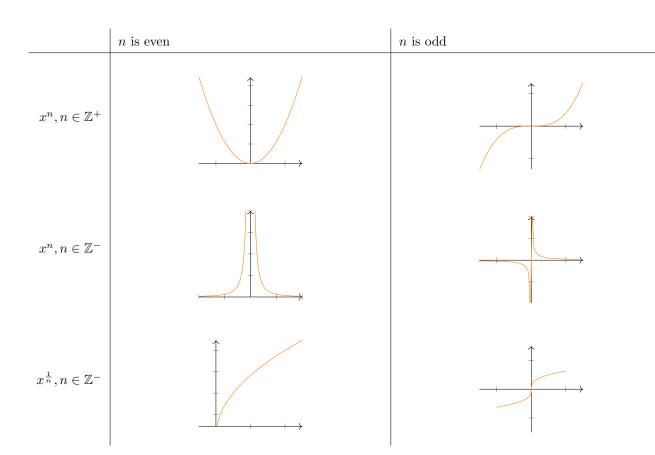
Odd and even functions

Even when
$$f(x) = -f(x)$$

Odd when $-f(x) = f(-x)$

Function is even if it is symmetrical across y-axis $\implies f(x) = f(-x)$ Function $x^{\pm \frac{p}{q}}$ is odd if q is odd





Polynomials $\mathbf{2}$

Quadratics

$$x^{2} + bx + c = (x + m)(x + n)$$

where mn = c, m + n = b

where $\Delta = b^2 - 4ac$

 $a^2 - b^2 = (a - b)(a + b)$ Difference

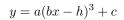
Perfect sq. $a^2 \pm 2ab + b^2 = (a \pm b^2)$

 $x^{2} + bx + c = (x + \frac{b}{2})^{2} + c - \frac{b^{2}}{4}$ Completing $ax^{2} + bx + c = a(x - \frac{b}{2a})^{2} + c - \frac{b^{2}}{4a}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Quadratic

Cubics

Difference of cubes: $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$ **Sum of cubes:** $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ **Perfect cubes:** $a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3} = (a \pm b)^{3}$



- \bullet m = 0 at stationary point of inflection (i.e. $(\frac{h}{h}, k)$)
- in form $y = (x a)^2(x b)$, local max at x = a, local min at x = b
- in form y = a(x-b)(x-c)(x-d): x-intercepts at b, c, d
- in form $y = a(x-b)^2(x-c)$, touches x-axis at b, intercept at c

Linear and quadratic graphs

Forms of linear equations

- y = mx + c
- $\frac{x}{a} + \frac{y}{b} = 1$ where (x_1, y_1) lies on the graph
- $y y_1 = m(x x_1)$ where (a, 0) and (0, b) are xand y-intercepts

Line properties

Parallel lines: $m_1 = m_2$

Perpendicular lines: $m_1 \times m_2 = -1$

Distance:
$$|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Quartic graphs

Forms of quartic equations

 $y = ax^4$ y = a(x-b)(x-c)(x-d)(x-e) $y = ax^4 + cd^2(c \ge 0)$ $y = ax^2(x-b)(x-c)$ $y = a(x-b)^2(x-c)^2$ $y = a(x-b)(x-c)^3$

Simultaneous equations (linear)

- Unique solution lines intersect at point
- Infinitely many solutions lines are equal
- No solution lines are parallel

3 Transformations

Order of operations: DRT

dilations — reflections — translations

Transforming x^n to $a(x-h)^n + K$

- dilation factor of |a| units parallel to y-axis or from x-axis
- if a < 0, graph is reflected over x-axis
- translation of k units parallel to y-axis or from x-axis
- translation of h units parallel to x-axis or from y-axis
- for $(ax)^n$, dilation factor is $\frac{1}{a}$ parallel to x-axis or from y-axis
- when 0 < |a| < 1, graph becomes closer to axis

Transforming f(x) to y = Af[n(x+c)] + b

Applies to exponential, log, trig, e^x , polynomials. Functions must be written in form y = Af[n(x+c)] + b **Power functions**

• dilation by factor |A| from x-axis (if A < 0, reflection across y-axis)

- dilation by factor $\frac{1}{n}$ from y-axis (if n < 0, reflection across x-axis)
- translation of c units from y-axis (x-shift)
- translation of b units from x-axis (y-shift)

Dilations

Two pairs of equivalent processes for y = f(x):

- 1. • Dilating from x-axis: $(x, y) \rightarrow (x, by)$
 - Replacing y with $\frac{y}{h}$ to obtain y = bf(x)
- 2.• Dilating from y-axis: $(x, y) \rightarrow (ax, y)$
 - Replacing x with $\frac{x}{a}$ to obtain $y = f(\frac{x}{a})$

For graph of $y = \frac{1}{x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y = \frac{a}{x}$, graph is contracted rather than dilated.

Matrix transformations

Find new point (x', y'). Substitute these into original equation to find image with original variables (x, y).

Reflections

- Reflection **in** axis = reflection **over** axis = reflection across axis
- Translations do not change

Translations

For y = f(x), these processes are equivalent:

- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of y = f(x)
- replacing x with x h and y with y k to obtain y - k = f(x - h)

Strictly increasing: $f(x_2) > f(x_1)$ where $x_2 > x_1$ (including x = 0)

Odd and even functions

Even when f(x) = -f(x)Odd when -f(x) = f(-x)Function is even if it can be reflected across *y*-axis $\implies f(x) = f(-x)$ Function $x^{\pm \frac{p}{q}}$ is odd if *q* is odd

 $x^{\frac{-1}{n}}$ where $n \in \mathbb{Z}^+$

Mostly only on CAS.

We can write $x^{\frac{-1}{n}} = \frac{1}{x^{\frac{1}{n}}} = \frac{1}{n\sqrt{x}}n$. Domain is: $\begin{cases} \mathbb{R} \setminus \{0\} & \text{if } n \text{ is odd} \\ \mathbb{R}^+ & \text{if } n \text{ is even} \end{cases}$ If n is odd, it is an odd function.

 $x^{\frac{p}{q}}$ where $p,q \in \mathbb{Z}^+$

$$x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

- if p > q, the shape of x^p is dominant
- if p < q, the shape of $x^{\frac{1}{q}}$ is dominant
- points (0,0) and (1,1) will always lie on graph
- Domain is: $\begin{cases} \mathbb{R} & \text{if } q \text{ is odd} \\ \mathbb{R}^+ \cup \{0\} & \text{if } q \text{ is even} \end{cases}$

Piecewise functions

e.g.
$$f(x) = \begin{cases} x^{1/3}, & x \le 0\\ 2, & 0 < x < 2\\ x, & x \ge 2 \end{cases}$$

Open circle: point included

Closed circle: point not included

Operations on functions

For $f \pm g$ and $f \times g$: dom' = dom(f) \cap dom(g) Addition of linear piecewise graphs: add y-values at

key points

Product functions:

- product will equal 0 if f = 0 or g = 0
- $f'(x) = 0 \leq g'(x) = 0 \Rightarrow (f \times g)'(x) = 0$

Composite functions

 $(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$

4 Exponentials & Logarithms

Logarithmic identities

$$\log_b(xy) = \log_b x + \log_b y$$
$$\log_b x^n = n \log_b x$$
$$\log_b y^{x^n} = x^n \log_b y$$
$$\log_a(\frac{m}{n}) = \log_a m - \log_a$$
$$\log_a(m^{-1}) = -\log_a m$$
$$\log_b c = \frac{\log_a c}{\log_a b}$$

Index identities

$$b^{m+n} = b^m \cdot b^n$$
$$(b^m)^n = b^{m \cdot n}$$
$$(b \cdot c)^n = b^n \cdot c^n$$
$$b^m \div a^n = b^{m-n}$$

Inverse functions

For $f : \mathbb{R} \to \mathbb{R}, f(x) = a^x$, inverse is:

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}, f^{-1} = \log_a x$$

Euler's number e

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Modelling

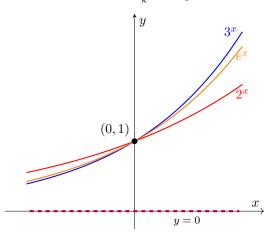
$$A = A_0 e^{kt}$$

- A_0 is initial value
- t is time taken
- k is a constant
- For continuous growth, k > 0
- For continuous decay, k < 0

Graphing exponential functions

$$f(x) = Aa^{k(x-b)} + c, \quad |a > 1$$

- y-intercept at $(0, A \cdot a^{-kb} + c)$ as $x \to \infty$
- horizontal asymptote at y = c
- domain is \mathbb{R}
- range is (c, ∞)
- dilation of factor |A| from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis



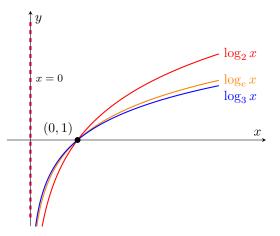
Graphing logarithmic functions

 $\log_e x$ is the inverse of e^x (reflection across y = x)

$$f(x) = A \log_a k(x-b) + c$$

where

- domain is (b, ∞)
- range is \mathbb{R}
- vertical asymptote at x = b
- *y*-intercept exists if b < 0
- dilation of factor |A| from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis



Finding equations

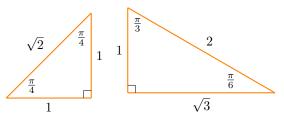
 $\operatorname{On CAS:} \left. \begin{cases} f(3)=9\\g(3)=0 \end{cases} \right|_{a,b}$

5 Circular functions

Radians and degrees

$$1 \operatorname{rad} = \frac{180 \operatorname{deg}}{\pi}$$

Exact values



Compound angle formulas

 $\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y$ $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$

Double angle formulas

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= 1 - 2\sin^2 x$$
$$= 2\cos^2 x - 1$$
$$\sin 2x = 2\sin x \cos x$$
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Symmetry

$$\sin(\theta + \frac{\pi}{2}) = \sin\theta$$
$$\sin(\theta + \pi) = -\sin\theta$$

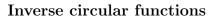
$$\cos(\theta + \frac{\pi}{2}) = -\cos\theta$$
$$\cos(\theta + \pi) = -\cos(\theta + \frac{3\pi}{2})$$
$$= \cos(-\theta)$$

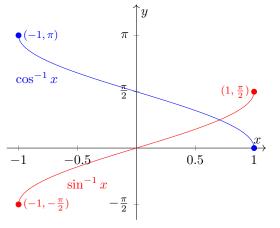
Complementary relationships

$$\sin \theta = \cos(\frac{\pi}{2} - \theta)$$
$$= -\cos(\theta + \frac{\pi}{2})$$
$$\cos \theta = \sin(\frac{\pi}{2} - \theta)$$
$$= \sin(\theta + \frac{\pi}{2})$$

Pythagorean identity

$$\cos^2\theta + \sin^2\theta = 1$$





Inverse functions: $f(f^{-1}(x)) = x$ (restrict domain)

 $\sin^{-1}: [-1,1] \to \mathbb{R}, \quad \sin^{-1}x = y$ where $\sin y = x, \ y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

$$\cos^{-1}:[-1,1]\to\mathbb{R},\quad \cos^{-1}x=y$$
 where $\cos y=x,\;y\in[0,\pi]$

$$\tan^{-1}: \mathbb{R} \to \mathbb{R}, \quad \tan^{-1} x = y$$
where $\tan y = x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$\xrightarrow{\frac{\pi}{2}}$$

$$\xrightarrow{\frac{\pi}{2}}$$

$$\xrightarrow{\frac{\pi}{2}}$$

$$\xrightarrow{\frac{\pi}{2}}$$

$$\xrightarrow{\frac{\pi}{2}}$$

\sin and \cos graphs

where:

Period =
$$\frac{2\pi}{n}$$

dom = \mathbb{R}
ran = $[-b + c, b + c];$
 $\cos(x)$ starts at $(0, 1)$, $\sin(x)$ starts at $(0, 0)$
0 amplitidue \implies straight line
 $a < 0$ or $b < 0$ inverts phase (swap sin and cos)
 $c = T = \frac{2\pi}{b} \implies$ no net phase shift

 $f(x) = a\sin(bx - c) + d$

$\tan \, \operatorname{graphs}$

$$y = a \tan(nx)$$

Period $=\frac{\pi}{n}$

Range is \mathbb{R}

Roots at $x = \frac{k\pi}{n}$ where $k \in \mathbb{Z}$ Asymptotes at $x = \frac{(2k+1)\pi}{2n}$

Asymptotes should always have equations and arrow pointing up

Solving trig equations

- 1. Solve domain for $n\theta$
- 2. Find solutions for $n\theta$
- 3. Divide solutions by \boldsymbol{n}

$$\sin 2\theta = \frac{\sqrt{3}}{2}, \quad \theta \in [0, 2\pi] \quad (\therefore 2\theta \in [0, 4\pi])$$
$$2\theta = \sin^{-1} \frac{\sqrt{3}}{2}$$
$$2\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}$$
$$\therefore \theta = \frac{\pi}{6}, \frac{\pi}{3}, \frac{7\pi}{6}, \frac{4\pi}{3}$$

6 Calculus

Average rate of change

$$m \text{ of } x \in [a, b] = \frac{f(b) - f(a)}{b - a} = \frac{dy}{dx}$$

On CAS: Action \rightarrow Calculation \rightarrow diff

Solving on CAS

Average value

$$f_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Instantaneous rate of change

Secant - line passing through two points on a curveChord - line segment joining two points on a curve

Limit theorems

- 1. For constant function f(x) = k, $\lim_{x \to a} f(x) = k$
- 2. $\lim_{x \to a} (f(x) \pm g(x)) = F \pm G$
- 3. $\lim_{x \to a} (f(x) \times g(x)) = F \times G$
- 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G}, G \neq 0$

A function is continuous if $L^- = L^+ = f(x)$ for all values of x.

Stationary points

Stationary point - i.e. f'(x) = 0

Point of inflection - max |gradient| (i.e. f'' = 0)

First principles derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Not differentiable at:

- discontinuous points
- sharp point/cusp
- vertical tangents (∞ gradient)

Tangents & gradients

Tangent line - defined by y = mx + c where $m = \frac{dy}{dx}$ **Normal line** - \perp tangent $(m_{tan} \cdot m_{norm} = -1)$ **Secant** = $\frac{f(x+h)-f(x)}{h}$ On CAS: Action \rightarrow Calculation \rightarrow Line \rightarrow tanLine or normal

Strictly increasing/decreasing

For x_2 and x_1 where $x_2 > x_1$:

• strictly increasing

where $f(x_2) > f(x_1)$ or f'(x) > 0

- strictly decreasing where $f(x_2) < f(x_1)$ or f'(x) < 0
- Endpoints are included, even where gradient = 0

stationary (local max) (local max) (f(x) (falling) (local min) y (local min) y (local min) y (local min) x stationary (local min) x

In graph: define function. Analysis \rightarrow Sketch \rightarrow (Normal | Tan line). Type x value to solve for a point. Return to show equation for line.

7

Derivatives			Antiderivatives		
f(x)	f'(x)		f(x)	$\int f(x) \cdot dx$	
$\sin x$	$\cos x$		$k \ (\text{constant})$	kx + c	
$\sin ax$	$a\cos ax$		x^n	$\frac{1}{n+1}x^{n+1}$	
$\cos x$	$-\sin x$		ax^{-n}	$a \cdot \log_e x + c$	
$\cos ax$	$-a\sin ax$		$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b) + c$	
an f(x)	$f^2(x)\sec^2 f(x)$		$(ax+b)^n$	$\frac{1}{a(n+1)}(ax+b)^{n-1}$	$1 + c \mid n \neq 1$
e^x	e^x			$\frac{1}{a}\log_e ax+b +c$	
e^{ax}	ae^{ax}		e^{kx}	$\frac{1}{k}e^{kx} + c$	
ax^{nx}	$an \cdot e^{nx}$		e^k	$e^k x + c$	
$\log_e x$	$\frac{1}{x}$		$\sin kx$	$\frac{-1}{k}\cos(kx) + c$	
$\log_e ax$	$\frac{1}{x}$		$\cos kx$	$\frac{1}{k}\sin(kx) + c$	
$\log_e f(x)$	$\frac{f'(x)}{f(x)}$		$\sec^2 kx$	$\frac{1}{k}\tan(kx) + c$	
$\sin(f(x))$	$f'(x) \cdot \cos(f(x))$)	$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a} + c \mid a > 0$	
$\sin^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$			$\cos^{-1}\frac{x}{a} + c \mid a > 0$	
$\cos^{-1}x$	$\frac{-1}{\sqrt{1-x^2}}$		$\frac{a}{a^2 - x^2}$	$\tan^{-1}\frac{x}{a} + c$	
$\tan^{-1} x$	$\frac{1}{1+x^2}$		$\frac{f'(x)}{f(x)}$	$\log_e f(x) + c$	
$rac{d}{dy}f(y)$	$\frac{1}{\frac{dx}{dy}}$	(reciprocal)	$\int f(u) \cdot \frac{du}{dx} \cdot dx$	$\int f(u) \cdot du$	(substitution)
uv	$u\frac{dv}{dx} + v\frac{du}{dx}$	(product rule)	$f(x) \cdot g(x)$	$\int [f'(x) \cdot g(x)] dx + \frac{1}{2}$	$\int [g'(x)f(x)]dx$
$rac{u}{v}$	$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	(quotient rule)			
f(g(x))	$f'(g(x)) \cdot g'(x)$				

Derivatives