Polynomials

Quadratics

General	$x^2 + bx + c = (x+m)(x+n)$
form	where $mn = c, m + n = b$
Difference	$a^2 - b^2 = (a - b)(a + b)$
of squares	
Perfect	$a^2\pm 2ab+b^2=(a\pm b^2)$
squares	
Completing	$x^{2} + bx + c = (x + \frac{b}{2})^{2} + c - \frac{b^{2}}{4}$
the square	$ax^2 + bx + c = a(x - \frac{b}{2a})^2 + c - \frac{b^2}{4a}$
Quadratic	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where $\Delta = b^2 - 4ac$

formula $x = \frac{1}{2a}$ where $\Delta =$

Cubics

Difference of cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ **Sum of cubes:** $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ **Perfect cubes:** $a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$

 $y = a(bx - h)^3 + c$

- m = 0 at stationary point of inflection (i.e. $(\frac{h}{b}, k)$)
- in form y = (x a)²(x b), local max at x = a, local min at x = b
- in form y = a(x-b)(x-c)(x-d): x-intercepts at b, c, d
- in form y = a(x b)²(x c), touches x-axis at b, intercept at c

Linear and quadratic graphs

Forms of linear equations

y = mx + c where m is gradient and c is y-intercept $\frac{x}{a} + \frac{y}{b} = 1$ where m is gradient and (x_1, y_1) lies on the graph

 $y - y_1 = m(x - x_1)$ where (a, 0) and (0, b) are x- and y-intercepts

Line properties

Parallel lines: $m_1 = m_2$

Perpendicular lines: $m_1 \times m_2 = -1$

Distance: $|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Quartic graphs

Forms of quadratic equations

$$y = ax^{4}$$

$$y = a(x - b)(x - c)(x - d)(x - e)$$

$$y = ax^{4} + cd^{2}(c \ge 0)$$

$$y = ax^{2}(x - b)(x - c)$$

$$y = a(x - b)^{2}(x - c)^{2}$$

$$y = a(x - b)(x - c)^{3}$$

Simultaneous equations (linear)

- Unique solution lines intersect at point
- Infinitely many solutions lines are equal
- No solution lines are parallel

Solving
$$\begin{cases} px + qy = a \\ rx + sy = b \end{cases}$$
 for $\{0, 1, \infty\}$ solutions

where all coefficients are known except for one, and a, b are known

- 1. Write as matrices: $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$
- 2. Find determinant of first matrix: $\Delta = ps qr$
- 3. Let $\Delta = 0$ for number of solutions $\neq 1$ or let $\Delta \neq 0$ for one unique solution.
- 4. Solve determinant equation to find variable *for infinite/no solutions: —*
- 5. Substitute variable into both original equations
- 6. Rearrange equations so that LHS of each is the same
- 7. RHS(1) = RHS(2) \implies (1) = (2) $\forall x \ (\infty \text{ solns})$ RHS(1) \neq RHS(2) \implies (1) \neq (2) $\forall x \ (0 \text{ solns})$

On CAS: Matrix $\rightarrow \texttt{det}$

Solving
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

- Use elimination
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable
- etc.