Polynomials

Quadratics

General form	$x^{2}+b x+c=(x+m)(x+n)$
Difference of squares	$a^{2}-b^{2}=(a-b)(a+b)$
Perfect	$a^{2} \pm 2 a b+b^{2}=\left(a \pm b^{2}\right)$
squares	
Completing the square	$x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}$
Quadratic formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where $\Delta=b^{2}-4 a c$

Cubics

Difference of cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Sum of cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Perfect cubes: $a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}=(a \pm b)^{3}$

$$
y=a(b x-h)^{3}+c
$$

- $m=0$ at stationary point of inflection (i.e. $\left(\frac{h}{b}, k\right)$)
- in form $y=(x-a)^{2}(x-b)$, local max at $x=a$, local min at $x=b$
- in form $y=a(x-b)(x-c)(x-d)$: x-intercepts at b, c, d
- in form $y=a(x-b)^{2}(x-c)$, touches x-axis at b, intercept at c

Linear and quadratic graphs

Forms of linear equations

$y=m x+c$ where m is gradient and c is y-intercept
$\frac{x}{a}+\frac{y}{b}=1$ where m is gradient and $\left(x_{1}, y_{1}\right)$ lies on the graph
$y-y_{1}=m\left(x-x_{1}\right)$ where $(a, 0)$ and $(0, b)$ are x - and y-intercepts

Line properties

Parallel lines: $m_{1}=m_{2}$
Perpendicular lines: $m_{1} \times m_{2}=-1$
Distance: $|\overrightarrow{A B}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Quartic graphs

Forms of quadratic equations

$y=a x^{4}$
$y=a(x-b)(x-c)(x-d)(x-e)$
$y=a x^{4}+c d^{2}(c \geq 0)$
$y=a x^{2}(x-b)(x-c)$
$y=a(x-b)^{2}(x-c)^{2}$
$y=a(x-b)(x-c)^{3}$

Simultaneous equations (linear)

- Unique solution - lines intersect at point
- Infinitely many solutions - lines are equal
- No solution - lines are parallel

Solving $\left\{\begin{array}{l}p x+q y=a \\ r x+s y=b\end{array}\right.$ for $\{0,1, \infty\}$ solutions
where all coefficients are known except for one, and a, b are known

1. Write as matrices: $\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$
2. Find determinant of first matrix: $\Delta=p s-q r$
3. Let $\Delta=0$ for number of solutions $\neq 1$ or let $\Delta \neq 0$ for one unique solution.
4. Solve determinant equation to find variable

- - for infinite/no solutions: -

5. Substitute variable into both original equations
6. Rearrange equations so that LHS of each is the same
7. $\operatorname{RHS}(1)=\operatorname{RHS}(2) \Longrightarrow(1)=(2) \forall x$ (∞ solns $)$ $\operatorname{RHS}(1) \neq \operatorname{RHS}(2) \Longrightarrow(1) \neq(2) \forall x(0$ solns $)$

On CAS: Matrix \rightarrow det
Solving $\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$

- Use elimination
- Generate two new equations with only two variables
- Rearrange \& solve
- Substitute one variable into another equation to find another variable
- etc.

Inverse functions

Functions

- vertical line test
- each x value produces only one y value

One to one functions

- $f(x)$ is one to one if $f(a) \neq f(b)$ if $a, b \in \operatorname{dom}(f)$ and $a \neq b$
\Longrightarrow unique y for each $x\left(\sin x\right.$ is not $1: 1, x^{3}$ is)
- horizontal line test
- if not one to one, it is many to one

Deriving f^{-1}

- if $f(g(x))=x$, then g is the inverse of f
- reflection across $y-x$
- $\operatorname{ran} f=\operatorname{dom} f^{-1}, \quad \operatorname{dom} f=\operatorname{ran} f^{-1}$
- inverse \neq inverse function (i.e. inverse must pass vertical line test)
$\Longrightarrow f^{-1}(x)$ exists $\Longleftrightarrow f(x)$ is one to one
- $f^{-1}(x)=f(x)$ intersections may lie on line $y=x$

Requirements for showing working for f^{-1}

1. start with" let $y=f(x)$ "
2. must state "take inverse" for line where y and x are swapped
3. do all working in terms of $y=\ldots$
4. for square root, state \pm solutions then show restricted
5. for inverse function, state in function notation

Transformations

Order of operations: DRT
dilations - reflections - translations

Transforming x^{n} to $a(x-h)^{n}+K$

- dilation factor of $|a|$ units parallel to y-axis or from x-axis
- if $a<0$, graph is reflected over x-axis
- translation of k units parallel to y-axis or from x-axis
- translation of h units parallel to x-axis or from y-axis
- for $(a x)^{n}$, dilation factor is $\frac{1}{a}$ parallel to x-axis or from y-axis
- when $0<|a|<1$, graph becomes closer to axis

Transforming $f(x)$ to $y=A f[n(x+c)]+b$
Applies to exponential, log, trig, e^{x}, polynomials.
Functions must be written in form $y=A f[n(x+c)]+b$

- dilation by factor $|A|$ from x-axis (if $A<0$, reflection across y-axis)
- dilation by factor $\frac{1}{n}$ from y-axis (if $n<0$, reflection across x-axis)
- translation of c units from y-axis (x-shift)
- translation of b units from x-axis (y-shift)

Dilations

Two pairs of equivalent processes for $y=f(x)$:

1. Dilating from x-axis: $(x, y) \rightarrow(x, b y)$

- Replacing y with $\frac{y}{b}$ to obtain $y=b f(x)$

2. - Dilating from y-axis: $(x, y) \rightarrow(a x, y)$

- Replacing x with $\frac{x}{a}$ to obtain $y=f\left(\frac{x}{a}\right)$

For graph of $y=\frac{1}{x}$, horizontal \& vertical dilations are equivalent (symmetrical). If $y=\frac{a}{x}$, graph is contracted rather than dilated.

Matrix transformations

Find new point $\left(x^{\prime}, y^{\prime}\right)$. Substitute these into original equation to find image with original variables (x, y).

Reflections

- Reflection in axis $=$ reflection over axis $=$ reflection across axis
- Translations do not change

Translations

For $y=f(x)$, these processes are equivalent:

- applying the translation $(x, y) \rightarrow(x+h, y+k)$ to the graph of $y=f(x)$
- replacing x with $x-h$ and y with $y-k$ to obtain $y-k=f(x-h)$

Power functions

Strictly increasing: $f\left(x_{2}\right)>f\left(x_{1}\right)$ where $x_{2}>x_{1}$ (including $x=0$)

Odd and even functions

Even when $f(x)=-f(x)$
Odd when $-f(x)=f(-x)$

Function is even if it can be reflected across y-axis
$\Longrightarrow f(x)=f(-x)$
Function $x^{ \pm \frac{p}{q}}$ is odd if q is odd

$x^{\frac{p}{q}}$ where $p, q \in \mathbb{Z}^{+}$

$$
x^{\frac{p}{q}}=\sqrt[q]{x^{p}}
$$

- if $p>q$, the shape of x^{p} is dominant
- if $p<q$, the shape of $x^{\frac{1}{q}}$ is dominant
- points $(0,0)$ and $(1,1)$ will always lie on graph
- Domain is: $\begin{cases}\mathbb{R} & \text { if } q \text { is odd } \\ \mathbb{R}^{+} \cup\{0\} & \text { if } q \text { is even }\end{cases}$

Piecewise functions

$$
\text { e.g. } f(x)= \begin{cases}x^{1 / 3}, & x \leq 0 \\ 2, & 0<x<2 \\ x, & x \geq 2\end{cases}
$$

Open circle: point included
Closed circle: point not included

Operations on functions

For $f \pm g$ and $f \times g: \quad \operatorname{dom}^{\prime}=\operatorname{dom}(f) \cap \operatorname{dom}(g)$
Addition of linear piecewise graphs: add y-values at key points

Product functions:

- product will equal 0 if $f=0$ or $g=0$
- $f^{\prime}(x)=0 \underline{\vee} g^{\prime}(x)=0 \nRightarrow(f \times g)^{\prime}(x)=0$

Composite functions

$(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$

Exponentials \& Logarithms

Index laws

$$
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m} n \\
(a b)^{m} & =a^{m} b^{m} \\
\left(\frac{a}{b}\right)^{m} & =\frac{a^{m}}{b^{m}} \\
n \sqrt{x} & =x^{1 / n}
\end{aligned}
$$

Logarithm laws

$$
\begin{aligned}
\log _{a}(m n) & =\log _{a} m+\log _{a} n \\
\log _{a}\left(\frac{m}{n}\right) & =\log _{a} m-\log _{a} \\
\log _{a}\left(m^{p}\right) & =p \log _{a} m \\
\log _{a}\left(m^{-1}\right) & =-\log _{a} m \\
\log _{a} 1=0 & \text { and } \log _{a} a=1 \\
\log _{b} c & =\frac{\log _{a} c}{\log _{a} b}
\end{aligned}
$$

Inverse functions

For $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^{x}$, inverse is:

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}, f^{-1}=\log _{a} x
$$

Exponentials

e^{x} natural exponential function

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Modelling

$$
A=A_{0} e^{k t}
$$

- A_{0} is initial value
- t is time taken
- k is a constant
- For continuous growth, $k>0$
- For continuous decay, $k<0$

Graphing exponential functions

$$
f(x)=A a^{k(x-b)}+c, \quad \mid a>1
$$

- y-intercept at $\left(0, A \cdot a^{-k b}+c\right)$ as $x \rightarrow \infty$
- horizontal asymptote at $y=c$
- domain is \mathbb{R}
- range is (c, ∞)
- dilation of factor $|A|$ from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis

Graphing logarithmic functions

$\log _{e} x$ is the inverse of e^{x} (reflection across $y=x$)

$$
f(x)=A \log _{a} k(x-b)+c
$$

where

- domain is (b, ∞)
- range is \mathbb{R}
- vertical asymptote at $x=b$
- y-intercept exists if $b<0$
- dilation of factor $|A|$ from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis

Finding equations

On CAS: $\left\{\left.\begin{array}{c}f(3)=9 \\ g(3)=0\end{array}\right|_{a, b}\right.$

Circular functions

Exact values

$$
1 \mathrm{rad}=\frac{180 \mathrm{deg}}{\pi}
$$

sin and cos graphs

$$
\begin{aligned}
& f(x)=a \sin (b x-c)+d \\
& f(x)=a \cos (b x-c)+d
\end{aligned}
$$

where

- a is the y-dilation (amplitude)
- b is the x-dilation (period)
- c is the x-shift (phase)
- d is the y-shift (equilibrium position)

Domain is \mathbb{R}
Range is $[-b+c, b+c]$;
Graph of $\cos (x)$ starts at $(0,1)$. Graph of $\sin (x)$ starts at $(0,0)$.

Mean / equilibrium: line that the graph oscillates around $(y=d)$

Amplitude

Graph oscillates between $+a$ and $-a$ in y-axis
$a=0$ produces straight line
$a<0$ inverts the phase (\sin becomes cos, vice vera)

Period

Period T is $\frac{2 \pi}{b}$
$b=0$ produces straight line
$b<0$ inverts the phase

Phase

c moves the graph left-right in the x axis.
If $c=T=\frac{2 \pi}{b}$, the graph has no actual phase shift.

Symmetry

$$
\sin \left(\theta+\frac{\pi}{2}\right)=\sin \theta
$$

$$
\sin (\theta+\pi)=-\sin \theta
$$

$$
\cos \left(\theta+\frac{\pi}{2}\right)=-\cos \theta
$$

$$
\cos (\theta+\pi)=-\cos \left(\theta+\frac{3 \pi}{2}\right)=\cos (-\theta)
$$

Pythagorean identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Complementary relationships

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
& \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta
\end{aligned}
$$

$$
\begin{gathered}
\sin \theta=-\cos \left(\theta+\frac{\pi}{2}\right) \\
\cos \theta=\sin \left(\theta+\frac{\pi}{2}\right)
\end{gathered}
$$

tan graph

$$
y=a \tan (n x)
$$

where

- a is x-dilation (period)
- n is y-dilation (\equiv amplitude)
- period T is $\frac{\pi}{n}$
- range is R
- roots at $x=\frac{k \pi}{n}$
- asymptotes at $x=\frac{(2 k+1) \pi}{2 n}, \quad k \in \mathbb{Z}$

Asymptotes should always have equations and arrow pointing up

Solving trig equations

1. Solve domain for $n \theta$
2. Find solutions for $n \theta$
3. Divide solutions by n
$\sin 2 \theta=\frac{\sqrt{3}}{2}, \quad \theta \in[0,2 \pi] \quad(\therefore 2 \theta \in[0,4 \pi])$
$2 \theta=\sin ^{-1} \frac{\sqrt{3}}{2}$
$2 \theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}$
$\therefore \theta=\frac{\pi}{6}, \frac{\pi}{3}, \frac{7 \pi}{6}, \frac{4 \pi}{3}$

Calculus

Average rate of change

$$
m \text { of } x \in[a, b]=\frac{f(b)-f(a)}{b-a}=\frac{d y}{d x}
$$

On CAS: Action \rightarrow Calculation \rightarrow diff

Instantaneous rate of change

Secant - line passing through two points on a curve Chord - line segment joining two points on a curve

Limit theorems

1. For constant function $f(x)=k, \lim _{x \rightarrow a} f(x)=k$
2. $\lim _{x \rightarrow a}(f(x) \pm g(x))=F \pm G$
3. $\lim _{x \rightarrow a}(f(x) \times g(x))=F \times G$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}, G \neq 0$

A function is continuous if $L^{-}=L^{+}=f(x)$ for all values of x.

First principles derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Not differentiable at:

- discontinuous points
- sharp point/cusp
- vertical tangents (∞ gradient)

Tangents \& gradients

Tangent line - defined by $y=m x+c$ where $m=\frac{d y}{d x}$
Normal line $-\perp$ tangent $\left(m_{\text {tan }} \cdot m_{\text {norm }}=-1\right)$
Secant $=\frac{f(x+h)-f(x)}{h}$

Strictly increasing/decreasing

For x_{2} and x_{1} where $x_{2}>x_{1}$:

- strictly increasing where $f\left(x_{2}\right)>f\left(x_{1}\right)$ or $f^{\prime}(x)>0$
- strictly decreasing where $f\left(x_{2}\right)<f\left(x_{1}\right)$ or $f^{\prime}(x)<0$
- Endpoints are included, even where gradient $=0$

Solving on CAS

In main : type function. Interactive \rightarrow Calculation \rightarrow Line \rightarrow (Normal | Tan line)
In graph: define function. Analysis \rightarrow Sketch \rightarrow (Normal | Tan line). Type x value to solve for a point. Return to show equation for line.

Stationary points

Stationary where $m=0$.
Find derivative, solve for $\frac{d y}{d x}=0$

Local maximum at point A

- $f^{\prime}(x)>0$ left of A
- $f^{\prime}(x)<0$ right of A

Local minimum at point B

- $f^{\prime}(x)<0$ left of B
- $f^{\prime}(x)>0$ right of B

Stationary point of inflection at C

Function derivatives

$f(x)$	$f^{\prime}(x)$
$k x^{n}$	$k n x^{n-1}$
$g(x) \pm h(x)$	$g^{\prime}(x) \pm h^{\prime}(x)$
c	0
$\frac{u}{v}$	$\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right) \div v^{2}$
$u v$	$u \frac{d v}{d x}+v \frac{d u}{d x}$
$f \circ g$	$\frac{d y}{d u} \cdot \frac{d u}{d x}$
$\sin a x$	$a \cos a x$
$\sin (f(x))$	$f^{\prime}(x) \cdot \cos (f(x))$
$\cos a x$	$-a \sin a x$
$\cos (f(x))$	$f^{\prime}(x)(-\sin (f(x)))$
$e^{a x}$	$a e^{a x}$
$\log _{e} a x$	$\frac{1}{x}$
$\log _{e} f(x)$	$\frac{f^{\prime}(x)}{f(x)}$

