1 Motion

$\mathrm{m} / \mathrm{s} \times 3.6=\mathrm{km} / \mathrm{h}$

Inclined planes

$F=m g \sin \theta-F_{\text {frict }}=m a$

Banked tracks

$$
\theta=\tan ^{-1} \frac{v^{2}}{r g}
$$

ΣF always acts towards centre, but not necessarily horizontally
$\Sigma F=F_{\text {norm }}+F_{\mathrm{g}}=\frac{m v^{2}}{r}=m g \tan \theta$
Design speed $v=\sqrt{g r \tan \theta}$

Work and energy

$W=F x=\Delta \Sigma E$ (work)
$E_{K}=\frac{1}{2} m v^{2}$ (kinetic)
$E_{G}=m g h$ (potential)
$\Sigma E=\frac{1}{2} m v^{2}+m g h$ (energy transfer)

Horizontal circular motion

$v=\frac{2 \pi r}{T}$
$f=\frac{1}{T}, \quad T=\frac{1}{f}$
$a_{\text {centrip }}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}$
$\Sigma F, a$ towards centre, v tangential
$F_{\text {centrip }}=\frac{m v^{2}}{r}=\frac{4 \pi^{2} r m}{T^{2}}$

Vertical circular motion

$T=$ tension, e.g. circular pendulum
$T+m g=\frac{m v^{2}}{r}$ at highest point
$T-m g=\frac{m v^{2}}{r}$ at lowest point

Projectile motion

- horizontal component of velocity is constant if no air resistance
- vertical component affected by gravity: $a_{y}=-g$

$$
\begin{array}{rr}
v=\sqrt{v_{x}^{2}+v_{y}^{2}} & \quad \text { (vectors) } \\
h=\frac{u^{2} \sin \theta^{2}}{2 g} & (\text { max height }) \\
x=u t \cos \theta & (\Delta x \text { at } t)
\end{array}
$$

$$
y=u t \sin \theta-\frac{1}{2} g t^{2} \quad(\text { height at } t)
$$

$$
t=\frac{2 u \sin \theta}{g} \quad \text { (time of flight) }
$$

$$
d=\frac{v^{2}}{g} \sin \theta \quad \text { (horiz. range) }
$$

Pulley-mass system

$a=\frac{m_{2} g}{m_{1}+m_{2}}$ where m_{2} is suspended $\Sigma F=m_{2} g-m_{1} g=\Sigma m a$ (solve)

Graphs

- Force-time: $A=\Delta \rho$
- Force-disp: $A=W$
- Force-ext: $m=k, \quad A=E_{s p r}$
- Force-dist: $A=\Delta$ gpe
- Field-dist: $A=\Delta$ gpe $/ \mathrm{kg}$

$$
\begin{aligned}
& \text { Hooke's law } \\
& F=-k x \\
& E_{\text {elastic }}=\frac{1}{2} k x^{2}
\end{aligned}
$$

Motion equations

$$
\begin{array}{ll}
v=u+a t & x \\
x=\frac{1}{2}(v+u) t & a \\
x=u t+\frac{1}{2} a t^{2} & v \\
x=v t-\frac{1}{2} a t^{2} & u \\
v^{2}=u^{2}+2 a x & t
\end{array}
$$

Momentum

$\rho=m v$
impulse $=\Delta \rho, \quad F \Delta t=m \Delta v$
$\Sigma m v_{0}=\Sigma m v_{1}$ (conservation)
$\Sigma E_{K \text { before }}=\Sigma E_{K \text { after }}$ if elastic
n-body collisions: ρ of each body is independent

2 Relativity

Postulates

1. Laws of physics are constant in all intertial reference frames
2. Speed of light c is the same to all observers (Michelson-Morley)
\therefore, t must dilate as speed changes
Inertial reference frame - $a=0$
Proper time $t_{0} \mid$ length l_{0} - measured by observer in same frame as events

Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$t=t_{0} \gamma(t$ longer in moving frame)
$l=\frac{l_{0}}{\gamma}$ (l contracts $\| v$: shorter in moving frame)
$m=m_{0} \gamma$ (mass dilation)

$$
v=c \sqrt{1-\frac{1}{\gamma^{2}}}
$$

Energy and work

$E_{0}=m c^{2}$ (rest)
$E_{\text {total }}=E_{K}+E_{\text {rest }}=\gamma m c^{2}$
$E_{K}=(\gamma-1) m c^{2}$
$W=\Delta E=\Delta m c^{2}$

Relativistic momentum

$$
\rho=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\gamma m v=\gamma \rho_{0}
$$

$\rho \rightarrow \infty$ as $v \rightarrow c$
$v=c$ is impossible (requires $E=\infty$)

$$
v=\frac{\rho}{m \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}}
$$

High-altitude muons

- t dilation - more muons reach Earth than expected
- normal half-life $2.2 \mu \mathrm{~s}$ in stationary frame, $>2.2 \mu$ s observed from Earth

3 Fields and power

Non-contact forces

- electric fields (dipoles \& monopoles)
- magnetic fields (dipoles only)
- gravitational fields (monopoles only)
- monopoles: lines towards centre
- dipoles: field lines $+\rightarrow-$ or $\mathrm{N} \rightarrow \mathrm{S}$ (or perpendicular to wire)
- closer field lines means larger force
- dot: out of page, cross: into page
- + ve corresponds to N pole

Gravity

$$
\begin{array}{r}
F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { (grav. force) } \\
\left.g=\frac{F_{g}}{m_{2}}=G \frac{m_{1}}{r^{2}} \quad \text { (field of } m_{1}\right) \\
E_{g}=m g \Delta h \tag{gpe}\\
W=\Delta E_{g}=F x \\
w=m(g-a) \quad \text { (gpe) } \\
W \quad \text { (app. weight) }
\end{array}
$$

Satellites

$v=\sqrt{\frac{G m_{\text {planet }}}{r}}=\sqrt{g r}=\frac{2 \pi r}{T}$

$$
\begin{equation*}
T=\frac{\sqrt{4 \pi^{2} r^{2}}}{G M} \tag{period}
\end{equation*}
$$

$$
\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}}
$$

(radius)

Magnetic fields

- field strength B measured in tesla
- magnetic flux Φ measured in weber
- charge q measured in coulombs
- emf \mathcal{E} measured in volts

$$
\begin{array}{rr}
F=q v B & (F \text { on moving } q) \\
F=I l B & (F \text { of } B \text { on } I)
\end{array}
$$

$r=\frac{m v}{q B} \quad$ (radius of q in B)
if $B \not \perp A, \Phi \rightarrow 0 \quad, \quad$ if $B \| A, \Phi=0$

Electric fields

$$
\begin{array}{rr}
F=q E & (E=\text { strength }) \\
F=k \frac{q_{1} q_{2}}{r^{2}} & \text { (force between } \left.q_{1,2}\right) \\
E=k \frac{q}{r^{2}} & \text { (field on point charge) } \\
E=\frac{V}{d} & \text { (field between plates) } \\
F=B I n l & \text { (force on a coil) } \\
\Phi=B_{\perp} A & \text { (magnetic flux) } \\
\mathcal{E}=-N \frac{\Delta \Phi}{\Delta t} & \text { (induced emf) } \\
\frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}=\frac{I_{s}}{I_{p}} & \text { (xfmr coil ratios) }
\end{array}
$$

Lenz's law: $I_{\text {emf }}$ opposes $\Delta \Phi$
Eddy currents: counter movement within a field
Right hand grip: thumb points to I (single wire) or N (solenoid / coil)
Right hand slap: $B \perp I \perp F$
Flux-time graphs: $m \times n=\mathrm{emf}$ Transformers: core strengthens \& focuses Φ

Particle acceleration

$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
e- accelerated with $x \mathrm{~V}$ is given $x \mathrm{eV}$

$$
\begin{aligned}
W & =\frac{1}{2} m v^{2}=q V \quad \text { (field or points) } \\
v & =\sqrt{\frac{2 q V}{m}} \quad \text { (velocity of particle) }
\end{aligned}
$$

Power transmission

$$
\begin{aligned}
& \quad V_{\mathrm{rms}}=\frac{V_{\mathrm{p} \rightarrow \mathrm{p}}}{\sqrt{2}} \\
& \mathrm{P}_{\mathrm{loss}}=\Delta V I=I^{2} R=\frac{\Delta V^{2}}{R} \\
& V_{\mathrm{loss}}=I R
\end{aligned}
$$

Use high- V side for correct $\left|V_{\text {drop }}\right|$

- Parallel - V is constant
- Series - V shared within branch

Motors

DC: split ring (two halves)
AC: slip ring (separate rings with constant contact)

