Vectors

- **vector:** a directed line segment
- arrow indicates direction
- length indicates magnitude
- notated as $\vec{a}, \widetilde{A}, \vec{a}$
- column notation:
- \overline{y} • vectors with equal magnitude and direction are equivalent

 \overline{x}

 $\overline{}$

Figure 1:

Vector addition

 $u + v$ can be represented by drawing each vector head to tail then joining the lines.

Addition is commutative (parallelogram)

Scalar multiplication

For $k \in \mathbb{R}^+$, ku has the same direction as u but length is multiplied by a factor of k .

When multiplied by $k < 0$, direction is reversed and length is multplied by k .

Vector subtraction

To find $u - v$, add $-v$ to u

Parallel vectors

Parallel vectors have same direction or opposite direction.

Two non-zero vectors u and v are parallel if there **is some** $k \in \mathbb{R} \{0\}$ **such at** $u = kv$

Position vectors

Vectors may describe a position relative to O .

For a point A, the position vector is \overrightarrow{OA}

Linear combinations of non-parallel vectors

If two non-zero vectors a and b are not parallel, then:

$$
ma + nb = pa + qb
$$
 : $m = p, n = q$

Column vector notation

A vector between points $A(x_1, y_1), B(x_2, y_2)$ can be represented as $\begin{bmatrix} x_2 - x_1 \\ x_2 - x_1 \end{bmatrix}$ $\begin{bmatrix} x_2 & x_1 \ y_2 - y_1 \end{bmatrix}$

Component notation

A vector $u = \begin{bmatrix} x \\ y \end{bmatrix}$ can be written as $u = xi + yj$. u is the sum of two components xi and yi Magnitude of vector $u = xi + yj$ is denoted by $|u| =$ $\sqrt{x^2+y^2}$

Basic algebra applies: $(xi + yj) + (mi + nj) = (x + m)i + (y + n)j$ Two vectors equal if and only if their components are equal.

Unit vectors

A vector of length 1. i and j are unit vectors.

A unit vector in direction of a is denoted by \hat{a} :

$$
\hat{a} = \frac{1}{|a|}a \quad (\implies |\hat{a}| = 1)
$$

Also, unit vector of a can be defined by $a \cdot |a|$

Scalar products / dot products

If $a = a_i i + a_2 j$ and $b = b_i i + b_2 j$, the dot product is:

 $a \cdot b = a_1 b_1 + a_2 b_2$

Produces a real number, not a vector.

$$
a \cdot a = |a|^2
$$

Scalar product properties

1. $k(a \cdot b) = (ka) \cdot b = a \cdot (kb)$ 2. $a \cdot 0 = 0$ 3. $a \cdot (b + c) = a \cdot b + a \cdot c$ 4. $i \cdot i = j \cdot j = k \cdot k = 1$ 5. If $a \cdot b = 0$, a and b are perpendicular 6. $a \cdot a = |a|^2 = a^2$

For parallel vectors a and b :

 $a \cdot b = \begin{cases} |a||b| & \text{if same direction} \\ -|a||b| & \text{if opposite directions} \end{cases}$

Geometric scalar products

$$
a \cdot b = |a||b|\cos\theta
$$

where $0 \leq \theta \leq \pi$

Perpendicular vectors

If $a \cdot b = 0$, then $a \perp b$ (since $\cos 90 = 0$)

Finding angle between vectors

positive direction

$$
\cos \theta = \frac{a \cdot b}{|a||b|} = \frac{a_1b_1 + a_2b_2}{|a||b|}
$$

on CAS: angle([a b c], [a b c]) (Action -> Vector \rightarrow Angle)

Vector projections

Vector resolute of a in direction of b is magnitude of a in direction of b.

$$
u = \frac{a \cdot b}{|b|^2}b = \left(a \cdot \frac{b}{|b|}\right)\left(\frac{b}{|b|}\right) = (a \cdot \hat{b})\hat{b}
$$

Scalar resolute of \vec{a} on $\vec{b} = |\vec{u}| = \vec{a} \cdot \hat{\vec{b}}$ (results in a scalar) Vector resolute of \vec{a} perpendicular to b is equal to $\vec{a} - \vec{u}$ where \vec{u} is vector projection of \vec{a} on \vec{b}

Vector proofs

Concurrent lines - \geq 3 lines intersect at a single point **Collinear points -** \geq 3 points lie on the same line (\Rightarrow $\vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If C is between \vec{AB} , then $0 < \mu < 1$

Useful vector properties:

- If a and b are parallel, then $b = ka$ for some $k \in \mathbb{R}$ $\mathbb{R} \setminus \{0\}$
- If a and b are parallel with at least one point in common, then they lie on the same straight line
- Two vectors a and b are perpendicular if $a \cdot b = 0$
- $a \cdot a = |a|^2$

Linear dependence

Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent if they are nonparallel and:

$$
k\vec{a} + l\vec{b} + m\vec{c} = 0
$$

$$
\therefore \vec{c} = m\vec{a} + n\vec{b} \quad \text{(simultaneous)}
$$

 \vec{a}, \vec{b} , and \vec{c} are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.

Vector \vec{w} is a linear combination of vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$

Three-dimensional vectors

Right-hand rule for axes $- z$ is up or out of page.

Angle between vector and axis

Direction of a vector can be given by the angles it makes with $\vec{i}, \vec{j}, \vec{k}$ directions.

For $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ which makes angles α, β, γ with positive direction of x, y, z axes:

$$
\cos \alpha = \frac{a_1}{|\vec{a}|}, \quad \cos \beta = \frac{a_2}{|\vec{a}|}, \quad \cos \gamma = \frac{a_3}{|\vec{a}|}
$$

on CAS: angle([a b c], [1 0 0]) for angle between $a\vec{i} + b\vec{j} + c\vec{k}$ and x-axis

Collinearity

Points A, B, C are collinear iff $\vec{AC} = m\vec{AB}$ where $m \neq 0$