1 FUNCTIONS
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1 Functions Finding f~*
e vertical line test 1. Let y = f(x)

e cach z value produces only one y value 2. Swap z and y (“take inverse”

3. Solve for y

One to one functions Sqrt: state &+ solutions then restrict

4. State rule as f~1(z) = ...
o f(x)is one to one if f(a) # f(b) if a,b € dom(f)

and a # b

5. For inverse function, state in function notation

= unique y for each z (sinz is not 1:1, 23 is) Simultaneous equations (linear)

e horizontal line test

e if not one to one, it is many to one e Unique solution - lines intersect at point

e Infinitely many solutions - lines are equal

Odd and even functions e No solution - lines are parallel

pr+qy=a
Even: fz) = f(—=) Solving for {0,1, 00} solutions
re+sy==
Odd: —f(z) = f(—x)
where all coefficients are known except for one, and a, b
Even = symmetrical across y-axis are known
¥4 is odd if q is odd
. . ql |z a
For z, parity of n = parity of function 1. Write as matrices: = b
ros| |y
Even: Odd: 2. Find determinant of first matrix: A = ps — qr
Y
,V 3. Let A = 0 for number of solutions # 1
x or let A # 0 for one unique solution.
4. Solve determinant equation to find variable
x

For infinite/no solutions:

. 5. Substitute variable into both original equations
Inverse functions
6. Rearrange equations so that LHS of each is the

e Inverse of f(x) is denoted f~1(x) same
e f must be one to one 7. RHS(1) = RHS(2) = (1) = (2) Va (0o solns)
e If f(g(x)) = z, then g is the inverse of f RHS(1) # RHS(2) = (1) # (2) Vz (0 solns)

e Represents reflection across y = x
e — f~!(z) = f(x) intersections lic on y = x OENEES Matrix — det
e ran f =dom f~!

s+ by +cz=dy
dom f =ran f!

. 0w . . Solving { ayx + byy + ca2 = dy
e “Inverse” # “inverse function” (functions must

pass vertical line test) a3 + b3y + cs3z = ds

o Use elimination
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2 POLYNOMIALS

Generate two new equations with only two vari-

ables

Rearrange & solve

Substitute one variable into another equation to

find another variable

Piecewise functions

x1/3, x <0
eg. f(z)=142, 0<z<2
x, x> 2

Open circle: point included

Closed circle: point not included

Operations on functions

For f+gand f x g: dom’ = dom(f) N dom(g)

Addition of linear piecewise graphs: add y-values at
key points

Product functions:

e product will equal 0 if f=0o0r g =0
o fl(x)=0Yg'(x) =07 (f xg)(z) =0

Composite functions

(f o g)(z) is defined iff ran(g) C dom(f)

2 Polynomials

Linear equations
Forms

e y=mx+c
e 2 4+ ¥ =1 where (x1,y1) lies on the graph
o y—y; = m(x —x1) where (a,0) and (0,b) are z-

and y-intercepts

Line properties

Parallel lines: m1 = mo
Perpendicular lines: my X mg = —1

Distance: |[AB| = V(e —21)2 + (y2 — y1)?

Quadratics

22 +bx +c= (x+m)(x+n)

where mn=c, m+n=1"»
Difference of squares
a® —b* = (a—b)(a+b)
Perfect squares
a® +2ab + b* = (a + b?)

Completing the square

x2+bx+c:(x+é)2+cf§
2 4
aachrbm:Jrc:a(xfE)QJrcfﬁ
2a 4a

Quadratic formula

. —b+Vb% — dac
o 2a
(Discriminant A = b? — 4ac)

Cubics

Difference of cubes

a® — b3 = (a—b)(a® + ab+ b?)
Sum of cubes

a® +b® = (a +b)(a* — ab+ b?)
Perfect cubes

a® £ 3a%b + 3ab® £ b° = (a £ b)?

y=a(br —h) +c

em = 0 at stationary point of inflection
(e (2,1))

o y=(r—a)’(x—b) —maxat x = a, minat x = b

o y=a(x—b)(z—c)(xr —d) — roots at b,c,d

o y=a(z—b)?(x—c) —roots at b (instantaneous),

¢ (intercept)

Quartic graphs

Forms of quartic equations

y = ax*

y=alz—b)(z—c)(z—d)(z —e)
y = az* + cd*(c > 0)
y=az*(z —b)(x —c)
y=a(x —b)%(z —c)?

y=alr —b)(x —c)
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3 TRANSFORMATIONS

n is even

n is odd

" n et

" n e~

x%,nEZ’

3 Transformations
Order of operations: DRT

dilations — reflections — translations

Transforming 2" to a(x — h)" + K

e dilation factor of |a| units parallel to y-axis or
from z-axis

e if ¢ < 0, graph is reflected over z-axis

e translation of k units parallel to y-axis or from
zr-axis

e translation of A units parallel to z-axis or from
y-axis

e for (az)", dilation factor is 1 parallel to z-axis
or from y-axis

e when 0 < |a| < 1, graph becomes closer to axis

Transforming f(z) to y = Af[n(z+c¢)]+0b

Applies to exponential, log, trig, e®, polynomials.

Functions must be written in form y = Af[n(x+c¢)]+b

e dilation by factor |A| from z-axis (if A < 0, re-
flection across y-axis)

e dilation by factor % from y-axis (if n < 0, reflec-
tion across x-axis)

e translation of ¢ units from y-axis (z-shift)

e translation of b units from z-axis (y-shift)

Dilations

Two pairs of equivalent processes for y = f(x):

—_
°

Dilating from z-axis: (z,y) — (z,by)

Replacing y with ¥ to obtain y = bf(z)

N
°

Dilating from y-axis: (z,y) — (az,y)

Replacing = with £ to obtain y = f(%)

For graph of y = %, horizontal & vertical dilations are

equivalent (symmetrical). If y = 2, graph is contracted

rather than dilated.
Matrix transformations

Find new point (z’,y’). Substitute these into original

equation to find image with original variables (z,y).

Reflections

o Reflection in axis = reflection over axis = reflec-
tion across axis

e Translations do not change

Translations

For y = f(x), these processes are equivalent:

e applying the translation (z,y) — (z + h,y + k)
to the graph of y = f(z)
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4 EXPONENTIALS & LOGARITHMS

e replacing x with x — h and y with y — k to obtain

y—k=f(x—h)

Power functions

Mostly only on CAS.

. =1
We can write z 7 = - = 1mn.

n

Tn

R\ {0} ifn isodd

Domain is:
Rt if n is even

If n is odd, it is an odd function.

2 where p,q € Z*

Qs

r1 = /aP

if p > ¢, the shape of P is dominant

if p < g, the shape of 27 is dominant

points (0,0) and (1,1) will always lie on graph
R if ¢ is odd

Domain is:

RTU{0} if ¢iseven

4 Exponentials & Logarithms
Logarithmic identities
log; (xy) = log, x + log, y
log, 2™ = nlog, x

log,, ymn = a"log, y

loga(%) = loga m— loga

log,(m™') = —log, m
log, c
1 =2
8 ¢ log, b

Index identities
bern — bm . bn
b-c)"=0b"-c"

bTYL . aTL — bm—n

Inverse functions

For f: R — R, f(x) = a”, inverse is:

fHURT SR f=log, x

Euler’s number e
1 n
e = lim (1 + )
n— oo n

Modelling

A= Agert

Ag is initial value

t is time taken

e k is a constant

For continuous growth, &k > 0

For continuous decay, k£ < 0

Graphing exponential functions
flx) = Ad*EY 4 ¢ Ja>1

e y-intercept at (0, A-a " +¢) as z — o

horizontal asymptote at y = ¢

e domain is R

range is (¢, o)

dilation of factor |A| from z-axis

dilation of factor % from y-axis

Y =
3.1,

Graphing logarithmic functions

log, x is the inverse of e (reflection across y = z)

flx) = Alog, k(z —b) + ¢
where
e domain is (b, 00)
e range is R

e vertical asymptote at x = b

o y-intercept exists if b < 0
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e dilation of factor |A| from z-axis

e dilation of factor % from y-axis

Yy
log, x
=0
logs x
(Ov 1) X
Finding equations
{f(33=9
On CAS: -339%914,b
5 Circular functions
Radians and degrees
1
1 rad — 80 deg
Exact values
4 3
\/5 4 . 1 2
z &
1 O O
1 V3

Compound angle formulas

cos(x £ y) = cosx + cosy F sinzsiny

sin(z £ y) =sinzcosy + coszsiny

tan(z + y) tanz + tany
n(z =
Y 1 Ftanztany

Double angle formulas

cos 2z = cos? z — sin® x

=1-2sin’z

=2cos?z —1

sin2x = 2sinx cos
2tanx

tan2r = ———
1 —tan®x

Symmetry
sin(f + g) =sinf

sin(f@ + m) = —sinf

cos(0 + g) = —cosf
cos(f 4+ m) = — cos(6 + 3777)
= cos(—0)

Complementary relationships
inf = cos(~ —
sin @ = cos( 5 0)
™
= —cos(0 + 5)
. s
cosf = sm(§ —0)

T
— si 0 —
sin(f + 2)

Pythagorean identity

cos? 0 +sin?6 =1

Inverse circular functions

Y

5

sin” " x

(=1,-%)

Inverse functions: f(f~!(x)) = x (restrict domain)
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Solving trig equations

-1 s —1
N —1 1 =
st [FL =R, sinT o=y 1. Solve domain for n@

where siny =z, y € [FF, §] 2. Find solutions for né

3. Divide solutions by n
cos ' [-1,1] =R, costz=y

sin20 = Y3 ge0,2n] (-.260¢€[0,4x])
where cosy =z, y € [0, 7]

tan ! :R—> R, tan laz=y . i’ ;;43;
0=%3% 3
where tany =z, y € (—%, %)
..................................... Y
v=73% 6 Calculus
T Average rate of change
f0) = fla) _dy
fz€lab)=—"——-=—">
) mof x € [a,b] - .
Yy=—-3
....................................................................... On CAS. ACtion — Calculation — dlff
. Average value
sin and cos graphs g
1 b
f(z) = asin(bz —c) +d fa"g:b_a/a (@) dz
where:
Instantaneous rate of change
Period = 27”
Secant - line passing through two points on a curve
dom =R Chord - line segment joining two points on a curve

ran = [-b+ ¢, b+ ¢];
Limit theorems
cos(x) starts at (0, 1), sin(z) starts at (0,0)

1. For constant function f(z) = k, lim,—,, f(x) =k
0 amplitidue = straight line 2. limya(f(2) £ g(z)) = F£G
a < 0 or b < 0 inverts phase (swap sin and cos) 3. limg o (f(2) x g(2)) = F x G
4. limy, 12 = £ G +£0
c=T= 27” = no net phase shift e G
A function is continuous if L~ = Lt = f(z) for all
tan graphs values of z.
y = atan(nz)
. First principles derivative
Period = — f B - f
n _
o) — 1 L@ = 1)
Range is R h=0 h

. Not differentiable at:
Roots at x = — where k € Z
n

e discontinuous points

Asymptotes at x = (%;;1)” )
e sharp point/cusp
Asymptotes should always have equations e vertical tangents (0o gradient)
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Tangents & gradients Solving on CAS

In main: type function. Interactive — Calculation —

4o Line — (Normal | Tan line)
dy

Tangent line - defined by y = mx + ¢ where m = 22

. In graph: define function. Analysis — Sketch —
Normal line - | tangent (Mg - Mnorm = —1)

Normal | Tan line). Type x value to solve for a point.
_ fa+h) =) (
Secant = %

Return to show equation for line.

On CAS:

Action — Calculation — Line — tanLine or normal

Stationary points

Stationary point: f(x)=0
Point of inflection: =0
Y
Strictly increasing/decreasing f@)

inflection

(falling) [/ f/(:L‘)
For zo9 and x1 where x5 > x1: \"‘\ /

Y i
L\ 1
\ f@)/]
“ I’ f/((E)
\ 1
\ 1
\ 1
' stationary 1
\ 1
y inflection
\ 1
\ ]
\ ’
\ 1
e strictly increasing | g
\ ’
where f(xz2) > f(x1) or f'(z) >0 ' K
A ’
e strictly decreasing \\ /!
where f(z2) < f(z1) or f'(z) <0 AN x

e Endpoints are included, even where gradient = 0
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6 CALCULUS

Derivatives Antiderivatives
fl@)  f(x) fl@) [f(z)-dw
sinx  cosz k (constant) kx +c
sinax acosax " 1 zn
n
cosr —sinz ax™™ a-log, |z|+¢
cosar —asinax ! l1 (ax +b) +
e LA G c
1
tan f(z)  f?(x)sec? f(x) (az + b)™ m(ax +b)" T 4cln#£1
xT xr 1
et e (ax +b)~t  —log, lax + b| +c
a
T ae® 6k:¢ lekm +ec
k
ax™ an-e™” ek eFrae
1 ! i -1
0T sin kx - cos(kz) + ¢
] 1 L
08 AT cos kx Z sin(kx) + ¢
f'( 1
log, f(z) f(($>) sec? kx z tan(kz) + ¢
1
sin(f(z))  f'(z) - cos(f(x)) sin ' Z +cla>0
a2 — 2 a
sin~'z 1 ! cosflg+c|a>0
V1 —22 a? — x2 a
-1
cos~lx 71 — a2zz2 tan—1 % Ye
1 /
=il (@)
tan"'z - T2 7o) log. fz) +c
1
d% W & (reciprocal) Jfw) -2 de [ f(u)-du (substitution)
dy
w w4 o (product rule) f(x)-gl)  [If'(z)- g(a)ldz + [[g' () f(z)]dx
du _ , dv
4 M (quotient rule)
v v
flg(@))  f'(9(x))- g (x)




